Users of the UrbanLife+ system may view a variety of recommended activities at any large information radiator. As the SUOs can identify an approaching user (provided they have installed the project’s mobile app and registered an account or they carry an iBeacon close to them), personalized recommendations can be provided from a pool of available activities in- and outside the neighborhood. To help foster motivation, we also aim to provide a variety of tasks and rewards which are modeled after the “quest” metaphor commonly found in role-playing video games, such that users would be enticed to attempt new activities and offers by small material rewards. See Fietkau (2019) for more details regarding this approach. For the purpose of this article, it is sufficient to know that the activity support system is intended as the central infrastructure to facilitate choosing outside activities, tracking individual progress and managing personal rewards.
When a user has decided to start an activity, the activity support service coordinates smart urban objects and data from other services to provide as much support as possible to the user while they navigate to the activity through the urban space, partake in the activity, and then navigate to the next location or back home.
Any action taken by the service is based on a known or suspected intent of the user. In our model, “intent” is defined as follows:
This intent model was developed iteratively based on internal correspondence with project members, including experts for elderly care. We started with a minimal model in which one user would have exactly one goal at any time, and then gradually expanded to accommodate ways in which we conjectured that real users would make plans for activities. The intent model has not been specifically validated and, if found lacking, is subject to change.
The activity support service attempts to determine and model user intents. Ideally, the user signals their intent to the UrbanLife+ system directly, for example by tapping “I want to visit the restaurant right now” at the large information radiator or by sharing their appointments with the UrbanLife+ system via an as-yet undetermined process. Avenues to infer user intents indirectly may also be explored, although this will be much more difficult to do reliably and in a way that does not confuse or patronize the user.
Margot Nowak3 wants to leisurely spend a few hours before dinner. She looks at the large information radiator at the Hardterbroich seniors home for some ideas for what to do. She sees that the Textiltechnikum (a local museum) is currently open and touch-drags the offer into her personal area for immediate use.
The information radiator notifies the activity support service that Margot intends to visit the Textiltechnikum right now. The service queries the routing service to determine the path that Margot is likely to take, and then requests a filtered list of smart urban objects located on or near this path from the central SUO management service. It calculates her expected arrival time based on her expected walking speed (determined heuristically or from previous tracking data, stored by the profile service) and sends an event to all affected SUOs reading something like “Margot Nowak is on her way to the Textiltechnikum and will likely pass by on foot in x minutes”. It may also send an email to Textiltechnikum staff letting them know that a person requiring mobility assistance is on the way.
The SUOs along the way can react to this new event in whichever way they deem appropriate: smart park benches may start a timely seating reservation process, lights may adjust themselves to Margot’s needs and preferences, small information radiators may prepare to show symbols for navigation assistance, etc. Whenever new information about Margot’s location becomes available, updated events may be sent – especially if Margot changes her mind about the activity and turns around to go back home.
Independent of user intents, SUOs may continue to offer their general functionality, such as small information radiators displaying dynamic warnings for hazardous areas like steps that get slippery after it has rained.
3: Margot Nowak is the name of a fictional persona – one of several – which UrbanLife+ uses for scenarios and usage models. Her demographic data and assistance requirements are an example for a person living in the senior housing residents in the city where the project is being conducted.
Setting aside the technical and organizational challenges in getting the UrbanLife+ platform to a functional stage, we view the evaluation from an HCI perspective as the most significant challenge. The goal is to strengthen seniors’ participation in the urban space and to make it easier and safer for them to take part in activities outside their home. Possible measures for success could be an increase of such activities, but it would be unrealistic for the scope of UrbanLife+ to perform a wide- area deployment to allow organic, unsupervised use of the platform. To evaluate our approach, we instead run long-term deployments of individual SUOs in semi- public areas in combination with time-limited, closely supervised installations in public spaces – say, deploying a number of small information radiators along the street during daylight hours for a few days to perform usability tests. Our specific constellation of circumstances prompts us to engage with a number of different challenges.
Firstly, we need to take care to design for user autonomy and self-determination. The activity support system aims to assist users and to open up new possibilites – our intent is to leave all decision making competence in the users’ hands. Designing all user interactions to respect this principle will be challenging. For example, users might perceive an arrow that signals them where to go next as a restriction as opposed to an assistance. Our interactions will need to be designed and evaluated to ensure that users are always aware that they are free to change their mind without penalty and to diverge from the provided recommendations whenever they want.
Within our constraints, we can definitely test the usability and user experience of the direct user interactions with the technology. However, determining whether it can have a positive long-term effect is much more difficult. To gauge whether our platform could actually help seniors be more active outside their home, we intend to rely mostly on self-reported results from interviews and questionnaires (e.g. “On a scale from 1 to 10, with 10 meaning “absolutely confident”, how confident do you feel about outside activities when using this system?”, “On a scale from 1 to 10, with 10 meaning “absolutely confident”, how confident do you feel about outside activities when going on your own without technology?”). The reliability of self- reported data in terms of predicting future behavior is limited. We attempt to bridge this gap by evaluating users’ observed behavior when interacting with our system – such as their level of engagement and their willingness to continue using it – and drawing an inference from increased motivation for repeated use of networked SUOs for outside activity support to increased motivation for outside activities.
Furthermore, although more of an engineering than a user research problem, we are faced with the challenge of respecting and protecting our users’ personal data. The data that users are asked to provide includes not only personal data commonly considered non-confidential, such as name and age, but also data about users’ specific physical abilities and needs for assistance. Even though we are not interested in actual medical data, many users may consider information about their eyesight or walking abilities (it could be considered “health-adjacent data”) particularly private. It goes without saying that we follow best practices about minimizing data collection and that all personal data is deleted as soon as it is no longer needed or the study has concluded. But beyond that, we also need to design our systems to minimize the potential for privacy violations. In practical terms, an important design guideline for UrbanLife+ is that each distributed component of our system only has access to the minimum required personal information about each user, as opposed to a naive “every component can access any data” approach.
At the time of writing, implementation work on our system is ongoing and empirical evaluations are being planned. At the beginning of 2020, we were planning to perform several short-term deployments of SUO networks in the spring and summer, which would be combined with long-term SUO installations that are already in progress. This would give us the opportunity to verify whether the activity support system can help seniors discover and take part in new outside activities. Several of our planned experiments would center around the gamified motivational support described in Fietkau (2019) and will verify the effectiveness of the activity support system as a matter of course, although we expected to gather feedback from other evaluations of networked SUOs conducted in the scope of UrbanLife+ as well.
Regrettably, as of the writing of this article’s final version, the COVID-19 pandemic has rendered most of our plans infeasible. We are currently unable to ascertain when and how evaluations and observations of our deployments with senior users in public will be able to be conducted safely. We are exploring new avenues for validation studies, but it seems certain that evaluations in the final year of UrbanLife+ will look entirely different than anticipated.
In this paper we have given an overview over the UrbanLife+ activity support system and described some of the research and design challenges we face. The concept of the presented activity support in this paper contains a central service to determine and model intents of seniors (a mental plan for a future activity) and supports the accomplishment of activities by providing information and guidance through distributed and connected SUOs in the urban area. In our implementation we respond to the identified challenges by ensuring trust in our service in respect to personal data handling and by considering an interface, that signals user autonomy and self-determination to the senior as we do not want our supported guidance to feel like an obligatory rule. In our evaluations so far, the need and interest for higher safety of elderly people was consistently confirmed. Whether our activity support service helps increasing safety feelings of seniors will be evaluated in upcoming and ongoing deployments, to whatever extent circumstances permit.
As the field of HCI involving seniors grows, we are hopeful for continued community discourse around the questions discussed herein. We aim to incorporate current and future best practices into our research.
This work has been supported by the Federal Ministry of Education and Research, Germany, under grant 16SV7443. We thank all project partners for their commitment.