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ABSTRACT 
Spatial information has become crucial in ambient display research 
and helps to better understand how people behave in a display’s 
vicinity. Walking trajectories have long been used to uncover such 
information and tools have been developed to capture them anony-
mously and automatically. However, more research is needed on the 
level of automation during mobility behavior analyses. Particularly, 
working with depth-based skeletal data still requires signifcant 
manual efort to, for instance, determine walking trajectories similar 
in shape. To advance on this situation, we adopt both agglomer-
ative hierarchical clustering and dynamic time warping in this 
research. To the best of our knowledge, both algorithms have so 
far not found application in our feld. Using a multi-dimensional 
data set obtained from a longitudinal, real-world deployment, we 
demonstrate here the applicability and usefulness of this approach. 
In doing so, we contribute insightful ideas for future discussions 
on the methodological development in ambient display research. 
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1 INTRODUCTION 
With the emergence of the post-desktop era, spatial information 
has become crucial in the process of designing and evaluating 
ubiquitous technology [3]. Unsurprisingly, research on large and 
interactive displays, or ambient displays, has been increasingly em-
barking on considering interaction in a deployment’s wider context 
[17]. Motivated by advances in motion sensing hardware such as 
time-of-fight cameras, research has begun leveraging computer 
vision (e.g., [18]) and depth-based data approaches (e.g., [8]) to in-
vestigate how people move through the space in front of real-world 
deployments. In doing so, more can be learned about, for instance, 
interacting and non-interacting users [17] as well as real users and 
simple passersby [14]. Essentially, studying spatial aspects enables 
the creation of novel tools, methods, frameworks, and theories for 
future research [3]. 

Ambient displays are typically investigated through an under-
standing of their audience behavior. Behavior, here, refers to a 
performance of some kind such as people approaching a display 
or moving around it [17]. Research on ambient displays has long 
been investigating low-level human activities using walking tra-
jectories—a shape-based pattern showing where and when people 
walk, typically as a top-down 2D projection—as an analytical tool 
[10]. Walking trajectories have proven so valuable that systems to 
capture them anonymously and automatically have been proposed 
(e.g., [14, 17]). These systems are more cost-efective than manual 
observation [8], easily adapted to other deployments, and readily 
integrated with other methodologies [17]. Yet, few tools currently 
exist to track mobility patterns in the wider space [4] and it is called 
for new tools to do so [3]. Studying ambient displays in the wild 
remains a challenging endeavor [8, 18], including their audience 
behavior [4]. 

Our research is driven by the fundamental interest of identify-
ing viable means that can aid the automatic exploration of said 
behavior and that can, simultaneously, extend meaningfully the ex-
isting repertoire of qualitative (e.g., observations) and quantitative 
methods (e.g., interaction logs) for evaluations in long-term feld 
deployment studies. Recently, related research has begun develop-
ing tools that, to varying extents, distill walking trajectories from 

https://orcid.org/0000-0002-6788-5072
https://orcid.org/0000-0001-7264-8496
https://orcid.org/0000-0002-5252-6050
https://orcid.org/0000-0001-7515-7473
https://orcid.org/0000-0002-5177-3025
https://orcid.org/0000-0002-9694-6946
https://doi.org/10.1145/3544549.3585661
https://doi.org/10.1145/3544549.3585661
mailto:michael.koch@unibw.de
mailto:laurenz.fuchs@gmail.com
mailto:kai.vonluck@haw-hamburg.de
mailto:julian.fietkau@unibw.de
mailto:susanne.draheim@haw-hamburg.de
mailto:jan.schwarzer@haw-hamburg.de


CHI EA ’23, April 23–28, 2023, Hamburg, Germany Schwarzer, Fietkau, Fuchs, Draheim, von Luck, Koch 

depth-based skeletal data (e.g., [8, 14]). Skeletal data contains anony-
mous multi-dimensional information of one to many joint locations 
chronologically tracked in a 3D space. It has the advantage that it 
provides more compact and efcient information when compared 
to depth images [9] and, simultaneously, due to its nature, ensures 
the privacy of passersby [8]. While skeletal data has been used in 
past research, it has so far usually acted as supporting evidence 
[8] and has required signifcant amounts of manual efort [8, 14]. 
Particularly the analysis process, as we found, requires higher levels 
of automation. Consequently, tasks such as readily determining 
similarities in mobility behavior or easily deducing conclusions 
regarding dominant patterns in a data set are challenging from the 
outset. We argue that this lack of automation prevents skeletal data 
from being used efectively in long-term feld deployment research 
to, for instance, serve as a useful addition to existing methods such 
as interaction logs, interviews, and observations. To improve this 
situation, in this research we adopt in tandem two well-known time 
series algorithms, agglomerative hierarchical clustering (AHC) [11] 
and dynamic time warping (DTW) [13]. Recently, the combination 
of both algorithms has received increasing attention, in part due 
to its superior clustering performance when compared to related 
approaches such as k-means [2]. Based on a real-world data set, we 
demonstrate here how these algorithms were successfully applied 
to automatically cluster walking trajectories similar in shape and 
discuss how this approach can be helpful in future endeavors. 

2 BACKGROUND 
Our research concentrates on recent work considering ambient dis-
plays embedded in a wider context. Initially, we seek to understand 
how these studies used walking trajectories as an analytical tool for 
mobility behavior. Then, attention is drawn to the challenges asso-
ciated with skeletal data and how the underlying analysis process 
can be automated. 

2.1 Walking trajectories: a display for mobility 
behavior 

To explore mobility behavior, researchers in the mid-2010s started 
using camera sensors. For example, Williamson and Williamson 
[17] leveraged walking trajectories to investigate pedestrian traf-
fc around a public display installation. With the help of motion 
detection techniques, walking trajectories were extracted to con-
duct behavioral analyses of non-interacting and interacting users. 
Their inquiry was geared towards learning more about how tech-
nology changes public spaces. A few years later, Williamson and 
Williamson [18] took on the challenge of how experimenter roles 
afect evaluations of ambient displays in the wild. Walking tra-
jectories acted as a tool to visualize pedestrian trafc in difer-
ent observer evaluation setups. The authors considered pedestrian 
tracking essential in quantifying the observer efect in public evalu-
ations. Elhart et al. [4], as a further example, were motivated by the 
lack of existing accurate, low-cost tools to track audience mobil-
ity. Their custom tool, similar to Williamson and Williamson [17], 
used walking trajectories to distill how people approached their 
display installation and how they moved through the space in front 
of it. According to Elhart et al. [4], the ability to capture mobility 
patterns such as walking trajectories is vital for evaluations. In 

a similar manner, Dalton et al. [3] showcased a tablet-based app 
able to record live mobility behavior in order to promote a better 
understanding of interaction in the environment. However, instead 
of relying on camera technology, the app provided a user interface 
to sketch walking trajectories with a fnger or stylus manually. The 
authors argue that automatic approaches have their limitations 
when it comes to indoor location fnding, while the app allowed 
for placing the behavior location at the center of observation. Con-
trary to the previous studies, Monastero and McGookin [10] used 
actual foor projections of walking trajectories to visualize other 
people’s presence and activities. Their research was aimed at in-
vestigating how people’s social awareness is afected by displaying 
mobility patterns of others in situ. They found that many uses of 
their foor projections were related to sociality and concluded that 
they enhanced both the curiosity and the connection with the lived 
environment. 

Finally, studies focusing on skeletal data to distill mobility be-
havior are more scarce. To our knowledge, the studies by Mäkelä 
et al. [8] and Schwarzer et al. [14] are the only recent examples 
embarking on this endeavor. Mäkelä et al. [8] introduced a cus-
tom process to gather and scrutinize skeletal data and described in 
detail the individual steppingstones to transcend raw data to inter-
pretable pieces of information. Walking trajectories were applied 
to, for instance, determine entry and exit directions of passersby. 
Schwarzer et al. [14], on the other hand, conducted an investigation 
of spatial and temporal audience behavior. Illustrations of walking 
trajectories were used extensively to, for example, contrast real 
users and simple passersby as well as highlight areas with strong 
user engagement. 

2.2 Automating the analysis process based on 
skeletal data 

Existing research [8, 14] illustrates in great detail how to analyze 
skeletal data from the standpoint of potential research questions or 
assumptions about the data. These approaches, however, require be-
coming well familiar with a data set, involving considerable manual 
efort such as laboriously going through the data by hand. At the 
methodological level, techniques are required that allow to exam-
ine a data set without pre-existing knowledge and that can rapidly 
provide insights at frst glance. These techniques would help with 
tasks such as gathering knowledge about mobility behavior more 
quickly or designing interviews and observations more efectively 
in mixed-methods research. 

The situation described has led us to explore ways to automate 
the analysis process in our research. Ultimately, we drew attention 
to time series clustering and AHC in particular. Time series cluster-
ing is one of the most important and useful means to analyze walk-
ing trajectories [15], whereas shape-based clustering algorithms, 
building on distance measures such as DTW, are especially increas-
ing in popularity as of late [7]. Both AHC and DTW have been 
successfully applied in combination to analyze trajectories relating 
to a variety of problems such as the fyways of birds [6], house-
hold electric load curves [2], or heat exchanges during a cooling 
season [19]. Research has demonstrated that this combination can 
outperform related approaches such as k-means, k-medoids, and 
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gaussian mixture models [2]. In addition, AHC’s unique hierarchi-
cal feature enables domain experts to choose at which level clusters 
make sense [6], while DTW improves the clustering performance 
compared to distance measures such as Euclidean, Manhatten, or 
Cosine [2]. Given this recent development, we decided to adopt 
both algorithms in the present research. 

3 METHOD Figure 1: The two similarity measures Euclidean distance 
(left) and dynamic time warping (right) in comparison.An existing skeletal data set is used in this study [14]. Below, we 

initially elaborate on this data set and, then, draw attention to the 
AHC and DTW algorithms. Lastly, we explain the ways in which with �� = (�� , �� ) and � � = (� � , � � ), a distance matrix with the size
the algorithms were evaluated. of � ×� elements is initially created. For each element, the distance 

� (�� , � � ) is computed using the equation in (1) for � -dimensional3.1 The skeletal data set data (in our case: � = 2) [5].
The data set originates from a multiple-year deployment of two 
custom ambient displays in a professional agile software develop-
ment environment. It incorporates information of more than 30,000 

vut
�∑ 
(��,� − � �,� )2 (1)� (�� , � � ) = 

passersby gathered with two Microsoft Kinect v2 cameras through- �=1 
out 4.5 months in 2017. In total, the data set consists of over 23,000 
individual text fle records. People’s mobility behavior is manifested 
in the individual frames of a record that were tracked chronolog-
ically in a 2D space (excluding values from the y-axis). A frame 
consists of a timestamp, a body tracking id, a record id, an inverted 
x-coordinate (the camera’s point of view), a z-coordinate, and a 
value of the .NET framework’s engaged property. Analogously to 
a defnition by Shivanasab et al. [15], the term walking trajectory, 
consequently, refers here to a two-dimensional shape that follows 
the x and z coordinates of these frames. 

We chose to use a subset of this data set, because we wanted 
to primarily focus in this work on the algorithmic approach. Ulti-
mately, we selected records that were tracked with one of the two 
aforesaid Kinect sensors and records representing single user cases, 
resulting in a total of 9,425 records. However, to extract some form 
of meaningful mobility behavior, we assumed that people needed 

Next, the DTW algorithm calculates a cost matrix that allows us 
to determine the alignment costs between two time series. To this 
end, the equation in (2) is utilized, which computes these costs for 
each element ��, � . The cost matrix helps with fnding the so-called 
warping path � , which is the path with the lowest alignment costs. 
It is obtained by moving through the cost matrix in reverse order 
(i.e., � = {��,�, ..., ��, � ..., �1,1 }). Its individual positions �� are then 
applied to the distance matrix to yield the overall alignment costs 
(i.e., �� = {��,�, ..., ��, � ..., �1,1}). Subsequently, the alignment costs 
in �� are averaged as shown in equation (3), whereas � refers to 
the total number of elements in the warping path. The lower the 
value, the more similar two time series are considered in their shape. 
Finally, after all distances are computed according to equation (3), 
an updated distance matrix is passed to the AHC algorithm. 

��, � = � (�� , � � ) + ��� 

   

�� −1, � −1to be tracked for a sufcient period of time. Thus, we increased 
the minimum number of frames required for a record to 63 frames 
(roughly 2 s), leading to a total of 3,523 remaining records (circa 

(2)�� −1, � 
��, � −1 

37%, 40 MB in size). Each of these records was assigned a unique 
identifer and an image fle depicting the record’s walking trajectory. 
We left the raw data as is and did not apply any flters. 

3.2 Shape-based clustering algorithm 
As will be illustrated in more detail below, we chose DTW because 
it enabled us to assess individual walking trajectories in terms of 
shape (dis-)similarities, while AHC allowed us to segment them 
into coherent groups. 

3.2.1 Dynamic time warping. DTW is an elastic measure and, in 
contrast to lock-step measures such as Euclidean distance, can deal 
with temporal drifts in time series (see Figure 1) [1]. It computes 
a non-linear correspondence between elements of time series [9] 
and allows for determining similarity in shape [2]. DTW, in fact, 
next to Euclidean distance, is one of the most commonly applied 
similarity measures in time series clustering [1, 7]. We consulted a 
study by Riofrío et al. [12] to implement DTW in this research. In 
brief, the DTW algorithm works as follows. Considering the two-
dimensional time series � = {�1, �2, ..., �� } and � = {�1, �2, ..., �� } 

∑ 1 � 

���� = ��� (3)
� 

�=1 

3.2.2 Agglomerative hierarchical clustering. AHC is a variant of 
hierarchical clustering that creates a binary, rooted hierarchy of 
clusters from the bottom up, meaning every data point, or walking 
trajectory as in our case, is a cluster at frst [1]. It is able to work 
with time series of arbitrary shapes and remedies the challenge 
of poor initial clusters [2]. In a nutshell, the algorithm builds on 
the computed distance matrix from the DTW algorithm and, then, 
recursively applies a linkage criterium to update the distance matrix 
by merging elements with the shortest distance until no more new 
instances are left to be merged [2]. AlMahamid and Grolinger [2] 
recently achieved the best clustering performance with the UPGMA 
(unweighted pair group method with arithmetic mean) linkage 
criterium in AHC, hence we decided to use it in our research as 
well. The UPGMA algorithm was implemented following to the 
equation given in (4). Here, each distance (�) between a cluster, 
for instance, � and � (� ∪ �), and a new cluster � , is the result 
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Figure 2: The dendrogram computed by the AHC algorithm, using the 352 randomly selected walking trajectories. Labels are 
provided for clusters with the fve highest values in distance as well as for the cluster with the smallest value in distance. The 
blue horizontal lines indicate the cutof levels at 12, 55, and 75 clusters, respectively. 

of proportional averaging the distances of ��,� and ��,� . At each 
iteration, computed cluster distances are stored temporarily to be 
ultimately included in a dendrogram relating each and every cluster 
to one another. 

|� | · ��,� + |� | · ��,� 
� (�∪� ),� = (4)

|� | + |� | 

3.3 Evaluation 
Evaluating extracted clusters without assigned data labels is chal-
lenging and there is still no universally accepted technique, neither 
visually nor numerically, to do so [1]. However, as Aghabozorgi 
et al. [1] note, labeling by a human judge can capture an algorithm’s 
strengths and shortcomings as ground truth in practice. Because 
AHC has a great visualization power [1], we chose to assess the 
performance of our implementation visually for the context of this 
research. To this end, we randomly selected a subset of 352 records 
from the entire data set (roughly 10% of records). We did so primar-
ily to keep manual eforts (e.g., comparing walking trajectories by 
hand) and the overall computational costs to a reasonable minimum. 

As central visual tools for our assessment, we used the AHC algo-
rithm’s dendrogram (see Figure 2) and visualizations of walking 
trajectory clusters (see Figure 4). 

4 RESULTS 
The dendrogram in Figure 2 suggests that the data set contains one 
large, homogeneous group of walking trajectories. Specifcally, a 
lot of trajectories were clustered at around the smallest computed 
distance of 0.40. Only a few stand in stark contrast to the aforesaid 
group. In one instance, the diference reaches as much as roughly 
929 times the value (371.75). Apart from that, there is no other 
comparably homogeneous group observable in the data set. 

In light of this observation, we then experimented with diferent 
cutof levels in the dendrogram. To demonstrate better, how we 
went about during analysis and how the algorithm successfully 
distilled mobility behavior patterns, we, in the end, decided to 
defne three cutof levels: 12, 55, and 75 clusters, respectively (see 
Figure 2). While this decision is not conclusive in a mathematical 
sense, we did so, because, on the one hand, with a total of 12 clusters, 
intra-cluster distances were reduced notably by about one-sixth, or 



Exploring Mobility Behavior Around Ambient Displays Using Clusters of Multi-dimensional Walking Trajectories CHI EA ’23, April 23–28, 2023, Hamburg, Germany 

(a) Cutof level=0 (all). 

(b) Cutof level=55. 

(c) Cutof level=75. 

Figure 3: Walking trajectories of the dominant mobility be-
havior at diferent cutof levels. 

more. At this cutof level, we were also able to present a mixture of 
clusters as an example (see Figure 4). On the other hand, we wanted 
to vividly illustrate the algorithm’s ability to isolate the dominant 
mobility behavior mentioned before. With the cutof levels of 55 
(see Figure 3b) and 75 (see Figure 3c), were able to do this in an 
exemplary manner. 

Our analysis led to the following conclusions. First, and fore-
most, the AHC algorithm was able to identify and group together 
two-dimensional walking trajectories with (dis-)similarity in shape. 
In our example, it became evident that, as intra-cluster distances 
gradually minimized, the algorithm increasingly better isolated the 
mobility behavior selected (see Figure 3). Therefore, what has been 
observed in the dendrogram initially, now became substantiated 
as the algorithm correctly merged the many walking trajectories 
recorded near people’s main walking path to the left of both display 
installations. In this area, both Kinect sensors tracked the most 
people [14]. Second, at any given cutof level, the algorithm is able 
to suggest potential outliers and clusters requiring further exam-
ination as shown in the example in Figure 4. Outliers, meaning 
one to many walking trajectories with rather large inter-cluster 
distances, can be quickly identifed and may point to a unique, 
novel, or uncommon behavior. For the data set at hand, outliers 
are, for example, clusters C10 and C11 for which we found no other 
incidents similar in shape in the data set. On the contrary, cluster 
C1 indicates that a higher cutof level would be necessary to unveil 
patterns underlying this cluster. 

Figure 4: The 352 walking trajectories of the entire data set 
clustered at a cutof level of 12 clusters (C1–C12) and sorted 
in descending order (according to the number of trajectories 
in parentheses). 

5 DISCUSSION 
The present study is the frst in its feld to adopt both AHC and 
DTW in an efort to perform a data-driven identifcation of patterns 
in skeletal data. By demonstrating both viability and usefulness of 
this approach, we make a contribution towards the methodolog-
ical framework for quantitative analyses of mobility behavior in 
an ambient display’s wider context. Specifcally, we add to exist-
ing research [8, 14] by proposing an approach able to (a) assist in 
evaluating skeletal data without any pre-existing knowledge and 
to (b) automatically suggest (dis-)similarities in people’s mobility 
behavior based on walking trajectory characteristics. In our view, 
fully or partially automated clustering is an indispensable tool for 
drawing conclusions from larger data sets, which may involve many 
thousands of individual records. Such conclusions can guide, for 
instance, mixed-methods feld deployment studies at the outset to 
design interviews and observations. Similarly, during later stages 
of a research endeavor, clustering information can be used to cross-
validate fndings from other methods. Throughout our research, 
we experienced that both the dendrogram and the visualizations 
at diferent cutof levels assisted greatly in becoming familiar with 
the data set at hand more quickly. While our approach is not a 
replacement for the visual analysis by human experts, we show 
that it is of value in tandem with, or as a precursor to, manual 
analysis. In perspective, research like ours may aid embarking on 
understudied issues such as how usage changes over time in lon-
gitudinal deployments [10]. Furthermore, while we worked with 
one specifc format of skeletal data provided by the Kinect camera, 
the AHC algorithm can be handily applied to formats of location 
tracking data drawn from other depth cameras (e.g., Stereolabs ZED 
2). In such instances, adjustments only have to be made in terms of 
selecting the correct axes as input parameters. Skeletal data, such 
as in the case of the Kinect sensor, may also contain additional 
information beyond joint coordinates (e.g., user engagement). Such 
information can be equivalently used in the AHC algorithm to 
cluster data accordingly. 
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Finally, attention is drawn to research limitations. First, AHC 
and DTW have a computational complexity of � (� 2) and � (� ·�), 
respectively [1, 16]. Both algorithms cannot deal with very large 
data sets efectively [1, 7] hence we are examining means to op-
timize their computational runtimes. Previous research [16], for 
instance, recommends using a warping window parameter � in 
DTW that lowers its overall complexity to � (� ·� ). Second, walking 
trajectories by themselves evoke ambiguity in leaving the reason 
for the movement open to interpretation [10]. Therefore, qualita-
tive methods such as interviews may be additionally required to 
cross-validate observations. Third, the quality of our evaluation 
depended greatly on our subjective judgment. To address this is-
sue mathematically, we are planning to incorporate measures such 
as within-cluster sum of squares and the silhouette coefcient. In 
doing so, we prospectively will be able to determine the optimal 
number of clusters [2, 19]. Forth, our evaluation was conducted 
with only one particular data set. More examinations with other 
data sets are required to profoundly underline the algorithm’s clus-
tering performance. Fifth, we utilized solely two-dimensional data 
of cases where one person was tracked. Thus, means are to be 
developed to process skeletal data containing information about 
multiple people. Lastly, our random selection of approximately 10% 
of the data during evaluation may have, to a lesser or greater extent, 
afected the results as well (e.g., instances of patterns may have 
been underrepresented in the data set). Considering the above-
mentioned optimizations regarding the algorithms’ complexity, we 
are planning to work with larger data sets in the future. 

6 CONCLUSION 
This research envisions guidance on how to practically increase the 
level of automation during the analysis process of multi-dimensional 
skeletal data. It proposes using AHC, leveraging DTW as a distance 
measure, for this purpose. Algorithmically, walking trajectories dis-
tilled from a real-world skeletal data set were merged into coherent 
clusters, individually displaying (dis-)similarities in the underly-
ing mobility behavior. By demonstrating our approach’s actual 
usefulness, it is, arguably, a viable addition to the repertoire of 
existing qualitative and quantitative methods for longitudinal am-
bient display research in the wild. We see its main strengths in 
markedly reducing the manual efort necessary during analysis and 
in becoming familiar with a data set at hand more quickly. In the 
future, we will focus primarily on optimizing the computational 
complexity of the algorithms, evaluating pre-processing steps such 
as z-normalization, and extending the existing approach to suggest 
the optimal number of clusters. 
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