der Bundeswehr

Universitat

User ldentification for Ubiquitous User
Interfaces Using Bluetooth Low Energy

Bachelor thesis

Christopher Lyko
1202408

Primary examiner: Prof. Dr. Michael Koch
Secondary examiner: Prof. Dr.-Ing. Mark Minas
Advisor: Dr. Julian Fietkau
Deadline: 31 May 2023

Universitat der Bundeswehr Miinchen

Fakultat fur Informatik

Abstract

The Human-Computer-Interaction Group — led by Prof. Dr. Michael Koch at the Universitét
der Bundeswehr Miinchen — conducts research on ubiquitous user interfaces for community
awareness — the so-called CommunityMirrors. Currently, the group strives for a practical
solution to identify interacting users of the CommunityMirrors to personalize their experience.
Therefore, this bachelor thesis discusses a solution to this problem using Bluetooth Low Energy
which is a a low power consuming technology enabling wireless communication via radio waves
between devices. Thereby, authentication and overall security is not explored. The technical
fundamentals of Bluetooth Low Energy are elaborated and its possible uses in the context of
user identification are discussed. One use is selected to implement a prototype. The prototype
enables the user to be identified and displays their name on the interface. The prototype
consists of an identity management system managing the digital identities of the users, an
extension of the software of the CommunityMirrors to receive Bluetooth signals and an app
for the user which transmits Bluetooth signals. The evaluation of the prototype confirms the
practical usability of Bluetooth Low Energy in the context of user identification. But further

research is necessary due to its inconsistency.

ii

Contents

1 Introduction

2 (Technical) Fundamentals

2.1 The Architecture of the CommunityMirrors
2.2 The Bluetooth Low Energy Stack

2.3

2.4

2.2.1
2.2.2
223
224
2.2.5

The Physical Layer o L
The Link Layer o
The Generic Access Profile —the Roles
The Attribute Protocol
The Generic Attribute Profile

Power Consumption of Bluetooth Low Energy — Influencing Parameters

2.3.1
2.3.2
2.3.3
2.34

Advertising Parameters L
Connection Parameters oo
Scanning Parameters Lo L 0oL

Transmission Power Level

Direction Finding Using Bluetooth Low Energy

2.4.1
2.4.2

Angle of Arrival Lo
Angle of Departure

3 Related Work
3.1 Previous Studies at the Human-Computer-Interaction Group
3.2 Other Studies e

Concept

4.1 Identity Management System
4.2 Choosing the Bluetooth Low Energy Roles,

4.3

4.2.1
4.2.2
4.2.3
4.24
4.2.5

C1 — CommunityMirror as Central and User as Peripheral
C2 — CommunityMirror as Observer and User as Broadcaster
C3 — CommunityMirror as Peripheral and User as Central
C4 — CommunityMirror as Broadcaster and User as Observer

Comparison and Selection oo

User — Broadcaster e

4.3.1

Choosing the Broadcasting Device and Operating System

iii

© O N N ot w W

10
11
11
11
12
12
13
13
13

14
14
15

Contents

4.3.2 Advertising Script
4.3.3 Android Applicationo
4.4 CommunityMirror — Observer
4.4.1 Scanning Script
4.4.2 Integration into the CommunityMirror Framework
4.5 Updated Architecture
Implementation
5.1 Identity Management System
5.1.1 SQLite Database
51.2 REST API
5.2 User — Broadcaster Advertising Script 0L
5.3 CommunityMirror — Observer o
5.3.1 Scanning Script
5.3.2 Integration into the CommunityMirror Framework
Evaluation
6.1 Evaluation Process L L
6.2 Results. e
6.3 The Security of the Prototype L

7 Conclusion
Acronyms

List of Figures
List of Tables

Bibliography

iv

30
30
30
30
31
33
33
34

36
36
36
39

40

42

43

45

46

1 Introduction

The Human-Computer-Interaction Group (HCI-G) — led by Prof. Dr. Michael Koch at the
Universitdt der Bundeswehr Miinchen — conducts research on ubiquitous user interfaces for
community awareness — the so-called CommunityMirrors (CMs). The CMs supply nearby
users with information they can interact with, which would be passively hidden in a database
otherwise. Moreover, the users are animated to cooperate in front of the CMs due to their
shared usage in (semi-)public environments (Ott, 2018, abstract).

Currently, the HCI-G strives for a practical solution to identify users in front of the CMs
to personalize their experience. The goal of this bachelor thesis is to develop a prototype and
integrate it into the software of the CMs. The CMs should also be able to display the names of
the identified users.

The basis of the prototype is the usage of the technology Bluetooth Low Energy (BLE).
Bluetooth technology was initially created to enable wireless communication between two
devices through radio waves without the need for another intermediate networking equipment.
It’s first version is known as Bluetooth Basic Rate which offered a data exchange rate of 1mb/s
between devices, followed later by Bluetooth Enhanced Data Rate with 2mb/s. In 2010 BLE
was introduced and defines together with Bluetooth Enhanced Data Rate the Bluetooth Core
Specification since its version 4.0. The additional features of BLE are a more efficient use
of the device’s power and next to 1:1 communication the possibility to realize 1:n and m:n
communication between devices (The Bluetooth Low Energy Primer, 2023, p. 7).

The users have to be represented digitally, meaning each user who wishes to be identified
needs a digital identity. A digital identity is a digital representation of an entity in a computer
system. It consists of an identifier with attributes linked to it. "Identification of a user is the
association of a personal identifier with an individual presenting attribute'. (Camp, 2004, p. 35
- 36)

It is important to note that this bachelor thesis does not focus on authentication — the
proof of the "association between an entity and an identifier" (Camp, 2004, p. 36) — and the
prototype’s security overall.

The thesis is structured this way: Chapter 2 covers (technical) fundamentals meaning the
architecture of the CMs, the Bluetooth Low Energy Stack (BLES), parameters influencing the
power consumption of BLE and direction finding using BLE. Chapter 3 analyzes related studies
by the HCI-G and other institutions. In Chapter 4 the concept of the prototype is developed
by conceptualizing an Identity Management System (IMS) which manages the digital identities.

1 Introduction

Also, the different possibilities of using BLE are elaborated, compared and one is selected for
the implementation. Chapter 5 focuses on the implementation of the concept. Therefore, the
concrete implementation of the IMS, the user sided BLE logic and the CommunityMirror (CM)
sided BLE logic are analyzed. In Chapter 6 the prototype is evaluated with up to three users.

A final conclusion is done in Chapter 7.

2 (Technical) Fundamentals

This chapter covers (technical) fundamentals. It starts with analyzing the architecture of the
CMs in whose context the prototype has to be developed. Afterwards, the striking parts of the
BLES are covered.

2.1 The Architecture of the CommunityMirrors

Figure 1 shows the architecture of the project! containing the CMs.

The CommunityMashup integrates data from different social services and an individual
content management system and transmits that data to the CMs.

A CM? consists of a (touch-) display that visualizes the data from the CommunityMashup,
the hardware to run the software and the software itself — the CommunityMirror Framework
(CMF)3. The users can interact with visualizations on the display via (touch) input.

Log files of the user interaction are saved on the Community Logging Server.

These log files are visualized on the CommunityMirror Dashboard Web App next to other
data which is saved on the CommunityMirror Dashboard Server.

The software of the CMs — the CMF — runs on Windows and is implemented in Java using the
Framework JavaFX%. JavaFX allows to create Java applications directly with a User Interface
(UI). Therefore, the class Stage® of the Framework contains the Ul of the application within
one instance of the class Scene. The Scene manages a scenegraph which consists of instances
extending the abstract class Node® which represents a Ul element. This is shown in Figure 2
and Figure 3.

Figure 4 shows the part of the CMF’s class diagram which is responsible for the data
visualization on the CM’s display using JavaFX. Therefore, the abstract class Group — a
subclass of the class Node — is extended by the class VisualComponent. The VisualComponent
is the abstract class which is extended by all kinds of visualizations. The figure also shows the
visual representation of some of the extending classes on a screenshot of a CM display and the

controllers controlling the visualized data of the child nodes of the VisualComponents.

1https://publicwiki.unibw.de/display/MCI/Gesamtprojekt
2https://publicwiki.unibw.de/display/MCI/CommunityMirror+-+Grundarchitektur+und+Wording
3https://atheneZ.informatik.unibw—muenchen.de/CM/communitymirrorframework3
4https://docs.oracle.com/javase/S/javafx/api/toc.htm
Shttps://de.wikipedia.org/wiki/JavaFX#/media/Datei:Javafx-stage-scene-node.svg
6https://de.wikipedia.org/wiki/JavaFX#/media/Datei:Javafx—layout—classes.svg

https://publicwiki.unibw.de/display/MCI/Gesamtprojekt
https://publicwiki.unibw.de/display/MCI/CommunityMirror+-+Grundarchitektur+und+Wording
https://athene2.informatik.unibw-muenchen.de/CM/communitymirrorframework3
https://docs.oracle.com/javase/8/javafx/api/toc.htm
https://de.wikipedia.org/wiki/JavaFX##/media/Datei:Javafx-stage-scene-node.svg
https://de.wikipedia.org/wiki/JavaFX##/media/Datei:Javafx-layout-classes.svg

2 (Technical) Fundamentals

CommunityMirror #1 /

—_—
CommunityMashup /
Interaction CommunityMirror-Display Interacfion
@ Interaction Interacfion
Wordpress CMS User #1 User #
ser #n

CommunityMirror Framework

Beit von O

EMENEAME
und FI CODE

User #2 User #3

CommunityMashup

Deutsche Bahn - Fahrplan

AtheneForschung

ES

CommunityMirror #n /

User #in+1

Community
Logging
Sgrver

CommunityMirror Framework
e

o2 i
und FI CODE

Interaction \ CommunityMirror-Display [Interaction

Interaction Interaction

User #n+m

User #n+2 User #n+3

Dashboard
Web App

@ o @

CommunityMirror

CommunityMirror
Dashboard
Server

Figure 1: The architecture of the project containing the CMs (https://publicwiki.unibw.de/
display/MCI/CommunityMirror+-+Grundarchitektur+und+Wording)

Stage

Scene

Node

Node

Node

Figure 2: JavaFX appli-
cation structure
(https://de.
wikipedia.org/
wiki/JavaFX#

/media/Datei:

JavaFX 2.0
Layout Classes

Node
(abstract)

Parent
(abstract)

Control
(abstract)

Group
non-resizable

Region
resizable, CSS stylable

resizable, skinnable, CSS stylable

|
JED

| | Accordian | | ToolBar |

|5tackPane| | HBox | | VBox | | |

| | | | I |BorderPane| | GridPane |

Figure 3: JavaFX
org/wiki/JavaFX#/media/Datei:
Javafx-layoutaASclasses.svg)

Javafx-stage-scene-node.

svg)

Node(https://de.wikipedia.

https://publicwiki.unibw.de/display/MCI/CommunityMirror+-+Grundarchitektur+und+Wording
https://publicwiki.unibw.de/display/MCI/CommunityMirror+-+Grundarchitektur+und+Wording
https://de.wikipedia.org/wiki/JavaFX##/media/Datei:Javafx-stage-scene-node.svg
https://de.wikipedia.org/wiki/JavaFX##/media/Datei:Javafx-stage-scene-node.svg
https://de.wikipedia.org/wiki/JavaFX##/media/Datei:Javafx-stage-scene-node.svg
https://de.wikipedia.org/wiki/JavaFX##/media/Datei:Javafx-stage-scene-node.svg
https://de.wikipedia.org/wiki/JavaFX##/media/Datei:Javafx-stage-scene-node.svg
https://de.wikipedia.org/wiki/JavaFX##/media/Datei:Javafx-stage-scene-node.svg
https://de.wikipedia.org/wiki/JavaFX##/media/Datei:Javafx-layout–classes.svg
https://de.wikipedia.org/wiki/JavaFX##/media/Datei:Javafx-layout–classes.svg
https://de.wikipedia.org/wiki/JavaFX##/media/Datei:Javafx-layout–classes.svg

2 (Technical) Fundamentals

«interfaces

Initializable Group

T

FXML Controller VisualComponent
BusController FlowVisualltemController Visualltem<T> BackgroundimageComponent BusComponent

N T

FXMLVisualltem<T>

i

— FlowVisualitem

PersonitemController

RFC 9372 publiziert -
Gemeinsame Arbeit von DLR
und FI CODE

Am 05.11.2019 starteten die Aktivitaten zur IETF-
Standardisierung von “L-band Digital Aefonautical
Communications System (LDACS)" durch das Team Nils
Maurer (DLR), Thomas Graupl (DLR) und Corinna Schmitt (FI
CODE, UniBw M).

19

O

o
=
~l

(8]
~l

1

Figure 4: Parts of the class diagram of the CMF responsible for visualization
and data control (https://athene2.informatik.unibw-muenchen.de/CM/
communitymirrorframework3)

2.2 The Bluetooth Low Energy Stack

Figure 5 — the BLES — describes the high-level architecture of BLE. On the highest level the
BLES differs between the host and the controller. Each of them contain different functional
layers. The five host layers — shown in Table 1 — have to be implemented by the operating
system of the device. (The Bluetooth Low Energy Primer, 2023, p. 10)

The controller is usually implemented on a external chip and manages the usage of radio
waves. It executes the defined operations by the host and consists of two modules, shown in
Table 2. (The Bluetooth Low Energy Primer, 2023, p. 10)

The host and the controller communicate through the Host Controller Interface (The Bluetooth
Low Energy Primer, 2023, p. 10).

For a better understanding of BLE the following subsections provide a deeper analysis of
the Physical Layer, the Link Layer, the Generic Access profile (GAP), the Attribute Protocol
(ATT) and the Generic Attribute Profile (GATT).

Nachste Busse ab
UniversitatsstraBe:
in 9 Minuten
21:19

Neupertach S0 (U) (5)

21:39

https://athene2.informatik.unibw-muenchen.de/CM/communitymirrorframework3
https://athene2.informatik.unibw-muenchen.de/CM/communitymirrorframework3

2 (Technical) Fundamentals

Module Key Responsibilities

Generic Access Profile Highest control layer which defines the roles
of the device

Generic Attribute Profile Organization of attributes from the At-

tribute Protocol within services, character-
istics and descriptors

Attribute Protocol Client-server communication model
Security Manager Protocol Protocol for pairing and key distribution
Logical Link Control and | Managing the execution of the different pro-
Adaption Protocol tocols

Table 1: The different layers of the host (The Bluetooth Low Energy Primer, 2023, p. 12)

Module Key Responsibilities

Link Layer Responsible for advertising, scanning and
creating/maintaining connections within a
state machine

Physical Layer Defines the usage of the radio transmitter
and receiver

Table 2: The different layers of the controller (the Isochronous Adaption Layer is ignored as it
only matters for BLE Audio) (The Bluetooth Low Energy Primer, 2023, p. 12)

Generic Access Profile (GAP)

Generic Attribute Profile (GATT)

Attribute Protocol (ATT) Security Manager Protocol (SMP)

Logical Link Control and Adaptation Protocol (L2CAP)

Host Controller Interface

Isochronous Adaptation Layer

Link Layer

Physical Layer

CONTROLLER

Figure 5: Bluetooth Low Energy Stack (The Bluetooth Low Energy Primer, 2023, p. 10)

2 (Technical) Fundamentals

BLE Packet
Preamble | Access Address Protocol Data Unit (PDU) CRC
1 Byte 4 Bytes 2-257 Bytes 3 Bytes

Figure 6: Link Layer Packet (The Bluetooth Low Energy Primer, 2023, p. 16)

2.2.1 The Physical Layer

The Physical Layer defines the usage of the device’s radio transmitter and receiver. Therefore,
digital data is encoded for the transmission and decoded for the receipt of the radio waves. The
data is transmitted on at least one of 40 channels with a spacing of 2 MHz in the range of 2400
MHz to 2483.5 MHz in the 2.4 GHz band. The usage of these channels is defined by the Link
Layer. (The Bluetooth Low Energy Primer, 2023, p. 13)

2.2.2 The Link Layer

The Link Layer defines the data packets that are transmitted over the air and the different
modes of the transmission. Also, it contains a state machine — depending on which it operates
in different ways. Moreover, it defines the usage of the radio channels of the Physical Layer.
(The Bluetooth Low Energy Primer, 2023, p. 16)

Packets

Figure 6 shows the components of each data packet exchanged between devices over the air. It
consists of the preamble, the access address, the protocol data unit and the cyclic redundancy
check.

The preamble contains useful information for the receiver to optimize the receipt of the packet,
for example by synchronizing on the frequency of the packet. The access address helps the
receiver to evaluate the relevance of the packet by differentiating it from background noise.
The protocol data unit contains the data to be exchanged. The cyclic redundancy check is a
uniquely calculated value from the other data in the packet by the transmitter. The receiver
also calculates that value from the data it received and compares it with the transmitted cyclic
redundancy check. If both values are equal, the packet was correctly transmitted and received.
(The Bluetooth Low Energy Primer, 2023, p. 17)

The Link Layer State Machine

The Link Layer operates depending in state machine which is shown in Figure 7.

The Link Layer can contain multiple instances of the Link Layer State Machine depending
on the hardware and software of the device. These are the different states: standby, advertising,
initiating, connection, scanning and synchronization.

In the state standby the device neither transmits nor receives packets.

2 (Technical) Fundamentals

Isochronous
Broadcasting

Synchronization

Advertising

Connection

Figure 7: The Link Layer State Machine (The Bluetooth Low Energy Primer, 2023, p. 18)

In the state advertising the device sends out advertising packets in a predefined advertising
interval. On the one hand advertising is used to indicate the existence of a connectable device
to other receiving devices nearby. After an accepted connection request the devices is called
peripheral. On the other hand advertising can be used to transmit data to unconnected devices
nearby that are in the state scanning or synchronization. In that case the device is called
broadcaster. Advertising packets are transmitted on the channels 37, 38 and 39. Each advertising
event is timed depending on the advertising interval. These timings are made slightly irregular
to avoid persistent collisions with packets of other advertising devices.

In the state initiating the device sends a connection request to a connectable advertising
device. Once the connection is established the device is called the central.

In the state connection the device is connected with another device. Both devices communicate
over encrypted data packets and mutually confirm the receipt of each packet. One of the devices
is called peripheral, the other is called central. 37 of the 40 channels can be used by connected
devices. A channel is deterministically selected before the transmission of a packet using a
channel selection algorithm. The connection is sustained by exchanging packets in a predefined
interval, called connection interval. If a connection event is not executed and the connection
supervision interval is exceeded the connection is lost and both devices switch to their previous
state.

In the state scanning the device listens for advertising packets from other devices. If the
device receives advertising packets from a connectable device and successfully connects to it
it is called central. If the device just listens to the advertising packets from non connectable

devices or without the intention of initializing a connection it is called observer. The observer

2 (Technical) Fundamentals

Role Description

Broadcaster A device which advertises constantly. Usually, it is
non connectable unless it also acts as a peripheral.
It is equipped with a transmitter.

Observer An observer scans constantly. It does not connect
to other devices, unless it also acts as a central. It
is equipped with a receiver.

Peripheral A peripheral is a broadcaster that switched its state
from advertising to connection during the connec-
tion process. It is equipped with a transmitter and
a receiver.

Central A central is an observer that switched its state
from scanning over initiating to connection. Dur-
ing the process a encryption procedure is ex-
changed. It is equipped with a transmitter and a
receiver.

Table 3: The four GAP roles (The Bluetooth Low Energy Primer, 2023, p. 71)

can perform two types of scanning — passive and active scanning. When scanning actively,
the observer sends packets back to the broadcaster for example to request further information.
Otherwise, the observer just listens passively for advertising packets.

In the state synchronization the device listens for periodic advertising packets by a particular
device. Therefore, the scanning for packets is synchronized with the advertising events of the
advertising device. These types of advertisements use 37 channels for the data transfer and are
non-connectable. (The Bluetooth Low Energy Primer, 2023, p. 18 - 25)

2.2.3 The Generic Access Profile — the Roles

The GAP is the highest control layer and defines the roles of the device. These are the four
roles that a communicating device can act as which were mentioned in the previous subsection:
broadcaster, observer, peripheral and central (The Bluetooth Low Energy Primer, 2023, p. 71 -
72). These roles are further explained in Table 3.

2.2.4 The Attribute Protocol

The ATT is a client-server communication protocol. It is used by two connected devices for
data exchange. Independently from the devices’ roles after the connection process (central or
peripheral) one device is called the client and the other is the server. The server contains
data storing attributes the client can write to or read from depending on its permission when
interacting with that attribute. The client can send read- and write-requests via packets to
the server, which will send back a response, also in packet form (The Bluetooth Low Energy
Primer, 2023, p. 61 - 63). Figure 8 represents a simple write request by the client to the server
with the two possible outcomes success and failure.

Moreover, the server can notify the client for example when an attribute’s value changes.

2 (Technical) Fundamentals

ATT Client ATT
Server

(successful write reguest)

ATT WRITE_REQ | ATT Client I Sj;-lrv_'rer
ATT_WRITE_RSP

“ P ATT HANDLE VALUE NTF

A4

+

(failed write request)
ATT_WRITE_REQ _
« ATT_ERROR_RSP] Figure 9: A notification by the server (The
Bluetooth Low FEnergy Primer,
2023, p. 63)

Figure 8: A write-request by the client
(The Bluetooth Low Energy
Primer, 2023, p. 63)

Service Service
Characteristic Characteristic Characteristic Characteristic

¥ Rl v

Descriptor Descriptor Descriptor

Figure 10: The hierarchic structure of the GATT (The Bluetooth Low Energy Primer, 2023, p.
67)

This is shown in Figure 9.

2.2.5 The Generic Attribute Profile

The GATT defines services, characteristics and descriptors based on the attributes of the ATT.
A service groups characteristics and is identified by its Universally Unique Identifier (UUID). A
service provides a context which is usually related to a capability of the device. A characteristic
stores a certain type of value, is contained by at least one service and can contain descriptors.
Also, permissions define how the user may interact with the value. A descriptor is contained
by a characteristic and describes the characteristic. (The Bluetooth Low Energy Primer, 2023,
p. 67)
Figure 10 summarizes the hierarchic structure of the GATT.

10

2 (Technical) Fundamentals

Advertising Average cur- — Connection Average cur-
Interval in | rent in mA Advertising Aver'flge cur- Interval in | rent in uA
Data Length | rent in mA
ms in Bytes ms
20 131 T WEE 20 244.198
100 313.493 15 2.264 100 111.722
250 159.389 19 1:677 250 64.926
500 86.203 %) 1.860 500 43.394
1000 55.291 37 5161 1000 37.217
10240 27.962 4000 25.406
Transmission | Average cur-
Power Level | rent in uA
Peripheral Average cur- in dBm
Latency rent in uA 8 140.67
(Skipped 4 110.598
Connection 0 121.504
Events) -4 105.664
0 69.968 -8 106.244
9 29.968 -12 101.446
18 24.345 -16 99.89
-20 99.843
-40 99.719

Table 4: Average power consumption depending on the following parameters: advertising
interval (the average current for an advertising interval of 20 ms seems to be an

inconsistency), advertising data length, connection interval and peripheral latency
(Jaimin, 2021)

2.3 Power Consumption of Bluetooth Low Energy — Influencing
Parameters

This section shortly evaluates the BLE parameters which have an impact on the power
consumption of the device. There are impacting parameters when advertising, when being
in a connection and general radio parameters. Therefore, a study on the influence of these
parameters on the power consumption was conducted by the company BuildStorm (Jaimin,
2021). The results are shown in Table 4.

2.3.1 Advertising Parameters

The advertising interval is the time between two consecutive advertising events. This parameter
can be set from 20ms to 10240ms. The study by BuildStorm concludes: the lower the advertising
interval the higher the power consumption.

The advertising data length is the second parameter and is limited to a maximum of 31 bytes.
As expected, the power consumption rises — but only minimally — with a greater data length.
(Jaimin, 2021)

2.3.2 Connection Parameters

The connection interval is the time between two consecutive connection events. This parameter

can be set from 7.5 ms to 4 s. Here, the power consumption rises with a lower connection

11

2 (Technical) Fundamentals

25
]

B Broadcaster only

O Observer only, window 10ms
O Observer only, window 15ms
O

20

s]
S
g w0 Observer only, window 20ms Power Levels (I) Transmission Power (p) (dBm) Range (m)
§ 0 10 dBm 200
& %1 1 4 dBm 70
H] 2 0 dBm 50
< 7 3 —4 dBm 40
4 —8 dBm 30
e 5 —12dBm 15
50 100 150 200 250 6 —16 dBm 70
Interval (ms) 7 —20dBm 3.5
8 —40 dBm 1.0

Figure 11: Average power consumption of
broadcaster and observer with
different advertising intervals,
scanning intervals and scan-
ning windows (Montanari et al.,

2017)

Figure 12: Transmission power levels
and their transmission ranges
(Qureshi et al., 2018)

interval.

Another influential parameter is the peripheral latency which specifies the number of con-
nection events that a peripheral is allowed to skip. The device may wake before the next
connection event to participate in a transaction if it has something to exchange with the central,
for example when it contains a GATT server and wants to notify the central about a value
change of a characteristic. If the slave latency rises the power consumption decreases. (Jaimin,
2021)

2.3.3 Scanning Parameters

Influential scanning parameters are the scanning interval and the scanning window. The
scanning interval is the time between two scans and the scanning window is the duration of a
scan.

The influence of these parameters is not analyzed in the study of BuildStorm (Jaimin, 2021)
but the power consumption of an observer and a broadcaster is measured in a study on human
proximity detection using BLE (Montanari et al., 2017). These results are shown in Figure 11.

The measured power consumption is given in megawatt. The unity watt is the product of
ampere and voltage. Under the assumption that both — observer and broadcaster — have the
same voltage we can get the ratio between the ampere values of observer and broadcaster. With

that ratio, the power consumption of an observer can be estimated.

2.3.4 Transmission Power Level

The transmission power level directly impacts the power consumption. Here applies: if the
transmission power level rises, the the power consumption also rises but only minimally (Jaimin,

2021). Figure 12 shows the transmission ranges depending on the transmission power level.

12

2 (Technical) Fundamentals

H H
H H
H H
H H
H '
: :
E AoD Estimation E
H i
b '

Figure 13: AoA (Bluetooth Core Specifica- Figure 14: AoD (Bluetooth Core Specifica-
tion, 2019, p. 281) tion, 2019, p. 283)

2.4 Direction Finding Using Bluetooth Low Energy

A device can calculate the direction of another device with two different methods: Angle of
Arrival (AoA) and Angle of Departure (AoD).

2.4.1 Angle of Arrival

The receiving device has an array of receiving antennas. By switching between these antennas
during the receipt and calculating the phase differences of the packets at the different antennas
the AoA can be estimated (Bluetooth Core Specification, 2019, p. 281). This is shown in Figure
13.

2.4.2 Angle of Departure

The transmitting device uses an array of antennas for transmission. The antennas switch during
transmission. The receiving device uses a single receiver, calculates the phase differences of the
receipt packets and estimates the AoD (Bluetooth Core Specification, 2019, p. 282 - 283). This

is shown in Figure 14.

13

3 Related Work

This chapter covers related work of the HCI-G and other institutions in the context of user
identification and BLE.

3.1 Previous Studies at the Human-Computer-Interaction Group

Between 2009 and 2010 students conducted research on user identification and authentication
at the HCI-G using Radio-Frequency Identification (RFID) and fingerprint sensors. Two RFID
readers were used — one for mid range and another one for long range reading — and each user
was equipped with an individual signal sending RFID card for identification. Unfortunately,
this turned out to be unreliable and not user-friendly as the card had to be aligned in a certain
position towards the readers. (Ott, 2018, p. 433 - 437)

Besides, BLE as another possibility for user identification was already explored by members
and students of the HCI-G. In the paper Activity Support for Seniors Using Public Displays:
A Proof of Concept a system is designed and prototyped which consists of networked public
displays to support senior users, particularly in the context of outdoor pedestrian movement
(Fietkau & Stojko, 2021). Therefore, the user is equipped with a BLE broadcasting device
whose MAC address was previously registered in the network. Each display acts as an observer
which listens for advertisements and their MAC address. If a registered user is nearby a display,
personalized data is displayed.

Also, Singh wrote a master thesis with the topic Designing a Mobile Identification and
User-Profile Solution for an Urban IoT Network where he proposed a user identification and
authentication system (Singh, 2018). Figure 15 shows the proposed architecture. In this context
the smart urban object can be a CM, for example. The identification and authorization works
via an extensive backend consisting of an authentication server, central server and a resource
server. Singh proposes the use of BLE beacons — another name for a broadcaster — whose
advertising packets are supposed to be received by the user who wishes to be identified. With
this information the user is identified and authenticated centrally by the smart urban object
they are closest to. Here, the objectives of this bachelor thesis differ. Authentication is not
explored and the identification of the user is done decentrally only using BLE. Also, the use of
the CM as a broadcaster is newly evaluated.

Moreover, Eisenlohr wrote his bachelor thesis about the concept and implementation of an

application for identification using mobile devices and BLE (Eisenlohr, 2021) with the ultimate

14

3 Related Work

@ Internet

- —> i

CCIELT

LLLLEL)

Smartphone Smart Urban Object

Figure 15: Singh’s proposed architecture (Singh, 2018, p. 36)

goal to implement a working prototype for users to be identified by a CM — similarly to this
bachelor thesis. Therefore, he chooses to assign the user the role of the central and the CM
the role of the peripheral with the justification that the user should be the one to initialize the
identification process. The CM implements a GATT server with a service for identification.
The service contains three writeable characteristics, one for the user’s name, another one for
the user’s password and one more to define the user’s request. Here, the user has to specify
if they wish to be registered in the IMS of the CM or if they are already registered and wish
to be identified (Eisenlohr, 2021, p. 25). The CM sided logic is implemented as a separate
application which is not integrated into the CMF. Thus, this bachelor thesis ultimately aims
for the implementation of a prototype which can be used in production. This includes the
integration of the CM sided logic into the CMF. Also, the assignment of the GAP roles is

reevaluated more closely.

3.2 Other Studies

Other studies on user identification with BLE are rare to find. Current research mainly focuses
on security issues regarding BLE and also its use for proximity detection, localization and how
to improve its consistency in that use case.

There is one study on using BLE for the identification of small wooden boats (Saputra et al.,
2022). Therefore, each boat is equipped with a BLE transmitter which is used as a broadcaster.
The marine inspector at a port acts as an observer and scans for the packets. On receipt they
filter the Bluetooth MAC Address of the broadcaster from the packet. They search for the
Bluetooth MAC Address in a list and inspect the boat themselves. The result of the inspection
together with the corresponding Bluetooth MAC Address is saved on a server.

As the Operating System (OS) of most smartphones and computers randomizes the BLE
MAC address to improve privacy of users, there is a lot of research on digital fingerprinting
for BLE as a mean of authentication but also to make aware of potential bypasses of the

randomization and loss of privacy (Akiyama et al., 2021; Guillaume Celosia, 2019; Nilsson, 2022;

15

3 Related Work

miD Holder

miD Reader Mobile Identity

Service

F 3
Y

Figure 16: The identity reader and the identity holder containing the identity service (Sakkopou-
los et al., 2019, p. 4)

Nilsson & Yan, 2021). This can be achieved through the exploitation of hardware imperfections,
privacy issues in the GATT and by analysing the Received Signal Strength Indicator values of
received advertising packet in static systems. With these methods classifications can be created
to differ between the transmitting devices.

Another paper proposes an approach for exchanging mobile identity data between two devices
with BLE (Sakkopoulos et al., 2019). It is differed between two roles: the identity reader and
the identity holder. The holder is a peripheral with a GATT server containing a serwvice for the

identity. The reader is a central. The overall idea is visualized in Figure 16.

16

4 Concept

In this chapter the concept of the prototype is developed. The basic process which needs to be
fulfilled by the prototype is the transmission of the user’s personal identifier of their digital
identity via BLE to the CM which links that identifier to the attributes of the digital identity
and displays the attributes — the user’s first name and last name. Also, the user should be
able to control when the CM stops displaying the attributes — from now on called detachment.
Therefore, the user requires wearable hardware that is able to perform BLE operations while
consuming little power. Due to its complexity, direction finding using BLE is not conceptualized.

First, an IMS — managing the digital identities of the users — is conceptualized. After that,
the usage of Bluetooth Low Energy is discussed by evaluating all different combinations of
the device roles that are defined by the Generic Access Profile of the BLES and choosing one
combination. Afterwards, the BLE related program flow of the chosen combination is created.

Last but not least, the updated architecture is created.

4.1 ldentity Management System

A system which manages the digital identities representing the users is required. Therefore,
a database management system needs to be implemented that manages the digital identities.
First of all, the digital identity representing a user has to be defined. For the prototype this
digital identity is kept simple. It consists of the user’s personal identifier, first name and
last name. The Bluetooth MAC address of the user’s device could be used as the personal
identifier as it is done in related works (Fietkau & Stojko, 2021; Saputra et al., 2022). But
this would limit the identification to a specific device and moreover many devices randomize
the transmitted Bluetooth MAC address. Thus, a UUID is generated and used as the user’s
personal identifier for the prototype. A UUID is a 128 bits long universally unique identifier
which is generated decentrally without any centralized registration process (Leach et al., 2005).

Secondly, a database schema needs to be defined. This is shown in an Entity-Relationship
Diagram in Figure 17.

The database management system has to enable the CM to select the entry from the user
table corresponding to the personal identifier of the user. Also, the user should be able to
insert, update and delete the entry representing their digital identity. These are the required

SQL commands:

o« SELECT first_name, last_ name FROM users WHERE user_id = ’7’;

17

4 Concept

Users

PK | user id VARCHAR(36)

first_name VARCHAR(20) NOT NULL

last_name VARCHAR(20) NOT NULL

Figure 17: The Entity-Relationship diagram for the IMS

o REPLACE INTO users (user_id, first_name, last_name) VALUES (°7’, '?’, ’7’);

o DELETE FROM users WHERE user_id =7’

As all CMs and users need access to the IMS, the system has to run on a central server. The

communication with that server can be realized with Representational State Transfer (REST).

4.2 Choosing the Bluetooth Low Energy Roles

Next, the usage of BLE has to be discussed. As already mentioned the GAP defines four possible
roles of a device using BLE: central, peripheral, observer and broadcaster. The communicating
devices for now are simply referred to as the user and the CM. These are the possible role

combinations:

Rolepeyice Centralyser Peripheralygse, Observeryse, Broadcasteryger

Centraloy C1

Peripheralcys C3

Observeron C2
Broadcasterc s C4

Table 5 shows the chosen values of the BLE parameters for each combination and the
estimated power consumption of each combination per user and CM.

FEach combination is tested on its implementability. Therefore, two Node.js modules —
bleno and noble — are used to test the essential CM sided functionality. Node.js' is an
open-source, cross-platform JavaScript runtime environment. The module bleno? is used to
implement a peripheral or a broadcaster and noble® to implement a central or observer. Another
promising BLE Application Programming Interface (API) is contained by the Universal Windows
Platform. The Universal Windows Platform?® is an API by Microsoft to create Windows Apps.

1https://nodejs.org/en

2https://github.com/noble/bleno

3https://github.com/noble/noble
4https://learn.microsoft.com/en—us/windows/uwp/get—started/universal—application—platform—guide

18

https://nodejs.org/en
https://github.com/noble/bleno
https://github.com/noble/noble
https://learn.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide

4 Concept

C1 C2 C3 C4

User | CM | User | CM | User | CM | User | CM
Advertising Interval in ms 100 - 100 - - 100 - 100
Advertising Data Length in Bytes 16 - 16 - 16 - - 16
Connection Interval in ms 20 20 - - 20 20 - -
Peripheral Latency (Number of 0 - 0 - - 0 - -
Skipped Connection Events)
Scanning Interval in ms - 100 - 100 100 - 100 -
Scanning Window in ms - 15 - 15 15 - 15 -
Transmission Power Level in dBm -16 -16 -16 - -16 -16 -16 -16
Advertising/Scanning:Connection- | 20:80 | 90:10 - - 20:80 | 90:10 - -
Ratio
Average Power Consumption in 63 1971 315 2190 | 438 283 | 2190 | 315
mA

Table 5: Power consumption of user and CM depending on the GAP roles (Estimated by using
the data from 2 2.3)

Unfortunately, the API is very roughly documented® and therefore not used for this bachelor
thesis. On the user side the Android Apps BLE Peripheral Simulator® and BLE Scanner” are
used.

4.2.1 C1 — CommunityMirror as Central and User as Peripheral

The CM takes the role of the central and the user the role of the peripheral. Thus, the user
constantly sends advertising packets which the CM has to scan for and connect to. This is shown
in Figure 18. Once a user is connected the CM would require — in context of Figure 18 — three
more instances of the Link Layer State Machine to enable the other users to identify. According
to the mentioned paper on mobile personal information exchange over BLE (Sakkopoulos et al.,
2019), the GATT server for identification should be implemented on the user side as the user is
the identity holder and the CM the reader. The server would have to offer an identity service
with a readable characteristic for their personal identifier, another one for their first name and
one more for their last name. If the IMS does not contain an entry with that personal identifier,
a new entry is inserted. Otherwise, if the user changed their attributes, the entry is updated. A
detachment can be triggered by manually disconnecting the peripheral or when the connection
supervision interval is exceeded, for example when the user moves out of range.
Noble is used to simulate the CM sided BLE logic.
noble = require(’noble’);
noble.on(’stateChange’, (state) => {
(state === "poweredOn’)

noble.startScanning ([],);

5https://learn.microsoft.com/de-de/windows/uwp/devices-sensors/bluetooth-low-energy-overview

6https://play.google.com/store/apps/details?id=io.github.webbluetoothcg.bletestperipheral&hl=en&
pli=1

7https://play.google.com/store/apps/details?id:com.macdom.ble.blescanner&hl:de&gl:US

19

https://learn.microsoft.com/de-de/windows/uwp/devices-sensors/bluetooth-low-energy-overview
https://play.google.com/store/apps/details?id=io.github.webbluetoothcg.bletestperipheral&hl=en&pli=1
https://play.google.com/store/apps/details?id=io.github.webbluetoothcg.bletestperipheral&hl=en&pli=1
https://play.google.com/store/apps/details?id=com.macdom.ble.blescanner&hl=de&gl=US

4 Concept

noble.stopScanning();

};

noble.on(’discover’, (peripheral) => peripheral.connect());
noble.on(’connect’, () => noble.startScanning([],));

noble.on(’disconnect’, (peripheral) => {});

Once the Bluetooth adapter is powered on the scanning for advertisement packets is started.
When a peripheral is discovered the CM connects to it. On a connection event noble stops the
scanning by default. Thus, the scanning is manually started again. Unfortunately, noble does
not support that and throws an error. Moreover, disconnect events are only fired when the CM
itself triggers the disconnection and not when the connection supervision interval is exceeded.

Thus, this combination is not suitable for the implementation of the prototype with noble.

4.2.2 C2 — CommunityMirror as Observer and User as Broadcaster

This combination is implemented in two of the related works (Fietkau & Stojko, 2021; Saputra
et al., 2022). The CM acts as an observer and the user as a broadcaster. The user constantly
sends advertising packets containing their personal identifier which the CM scans for. This is
shown in Figure 18. When receiving a packet the CM identifies the user if they are registered
in the IMS for example via REST. Therefore, the IMS is checked for the personal identifier
and the user’s first name and last name are displayed. When the CM receives no advertising
packet from that user for some time afterwards the detachment is triggered. Simultaneous
identifications are possible this way as no connections are formed but constant collisions could
happen on the three advertising channels depending on the packet density. Practically, this
should not be a problem when scanning for up to 50 advertising devices at least. When the
advertising interval is perfectly configured it takes an observer only about 2.25 seconds to
receive an advertising packet from each of the 50 devices (Shan et al., 2016).

The implementability of this combination is already indirectly tested in 4.2.1 where the

discovery of peripherals worked fine.

4.2.3 C3 — CommunityMirror as Peripheral and User as Central

This combination is implemented in Eisenlohr’s bachelor thesis for one identification at a time
(Eisenlohr, 2021). The user acts as the central and the CM acts as the peripheral. Now, the CM
sends the advertising packets and the user scans for them. This is visualized in Figure 19. As
in C1, the user contains a GATT server with the identification service which the CM can read
from. Simultaneous identifications again require multiple implementations of the Link Layer
State Machine. The detachment can again be triggered manually by the user or by exceeding
the connection supervision interval.

Bleno is used to simulate the CM sided logic.

bleno = require(’bleno’);

20

4 Concept

RFC 9372 publiziert -

Gemeinsame Arbeit von DLR
und Fl CODE

1 00 i B

Figure 18: Bluetooth Low Energy Usage — Combination 1 / 2

bleno.on(’stateChange’, (state) => {
if (state === 'poweredOn’)
bleno. startAdvertising (...);
else

bleno.stopAdvertising ();

s

bleno.on(’accept’, () => bleno.startAdvertising (...));
bleno.on(’disconnect’, (peripheral) => {});

Once the device is powered on the bleno starts advertising. When bleno accepts the connec-
tion request of a central the advertising is stopped and needs to be manually started again.
Unfortunately, this is not supported and causes an error. Also, the disconnection event is only
fired when bleno itself triggers the disconnection from the client. So exceeding the connection
supervision interval can not be detected. Thus, this combination is not implementable with
bleno.

As a side note, bleno interprets the peripheral role also as the role of the GATT server which
means the identification service would need to be implemented by the CM which was also done
by Eisenlohr (Eisenlohr, 2021). This would require additional logic to handle simultaneous

requests by users to that server.

4.2.4 C4 — CommunityMirror as Broadcaster and User as Observer

This combination is mentioned in Singh’s master thesis, but in the context of proximity

measurement (Singh, 2018). The user acts as the observer and the CM as the broadcaster. Thus,

21

4 Concept

RFC 9372 publiziert -
Gemeinsame Arbeit von DLR

CommunityMirror

Figure 19: Bluetooth Low Energy Usage — Combination 3 / 4

Advertising
(Peripheral /
Broadcaster)

the user listens for advertising packets transmitted by the CM. To send back a packet containing
the personal identifier the user would have to perform active scanning. Unfortunately, the
detachment is difficult this way. Firstly, the user could trigger the detachment manually and
send another response packet to the CM. Secondly, if the user forgets to do so and moves out
of the receival range for the CM’s advertising packets they can not trigger a detachment via
BLE anymore. Another form of communication for example via REST would be necessary.
Simultaneous identifications would be possible but depend on signal density and collisions when
sending the packet with the personal identifier. This is also visualized in Figure 19.

Bleno provides functionality to implement a broadcaster, but none to react to answering
packets of observers that perform active scanning.

const bleno = require(’bleno’);

bleno.start AdvertisingIBeacon (...);

Unfortunately, none of the advertising packets can be received by the BLE Scanner.

4.2.5 Comparison and Selection

Last but not least, one of the four combinations has to be chosen for the next chapter on the
prototype’s implementation. Therefore, Table 6 compares the different combinations.

The implementability is fundamental for the implementation. Only C2 meets that requirement
which makes the choice trivial. Nevertheless, C2 is not the optimal solution as it consumes

way more power than C3, provides only limited bidirectional communication, no encrypted

22

4 Concept
.—start Standby ——startAdvertising— Advertising
|¢——siopAdverfising

Figure 20: User — State pattern for broadcasting

siop

communication and another form of communication has to be used for the registration in the
IMS.

4.3 User — Broadcaster

The user acts as a broadcaster. Therefore, a device with a Bluetooth transmitter — running the

advertising script — needs to be chosen.

4.3.1 Choosing the Broadcasting Device and Operating System

It is most handy for the user if they do not have to use an additional device. Thus, the
smartphone seems to be the best choice as approximately 86 percent® of the world’s population
own a smartphone. Most importantly, modern smartphones implement the modules of the
BLES and provide the necessary hardware.

The mainly used OS are Android by Google — used by about 69 percent of all smartphone
users — and i0OS by Apple — used by around 30 percent.? The Flutter!? Development Kit could
be used for the development of an application which runs on both OS. Unfortunately, Flutter
does not have an API or library!'! to use the smartphone as a broadcaster. Thus, Android is

chosen as the OS which runs the advertising script.

4.3.2 Advertising Script

The advertising script is executed according to a state pattern depending on which the user
advertises data or is in standby. The user has full control over the state changes. Figure 20

shows the state diagram.

4.3.3 Android Application

The advertising script is implemented within an Android application. Next to implementing
the state pattern, the application should enable the user to write their digital identity to the
IMS, edit it and delete it.

8https://www.bankmycell.com/blog/how-many-phones-are-in-the-world

9https://gs.statcounter.com/os—market—share/mobile/worldwide
POhttps://flutter.dev/
11https://leancode.co/blog/bluetooth-low-energy-in-flutter

23

https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://flutter.dev/
https://leancode.co/blog/bluetooth-low-energy-in-flutter

4 Concept

oe)s

IojjTuISuRI)
198N

buruunos 202200
suriojrod 1osn

oguel

JO Ino soaow
IS UM

oQuop 9q j0U UBD

ON aIemjyjos olseq {I9ATODDI (]ND ON oY) :poyWI | JULWIYDRIDP ‘ON VW 061 YV GT¢ poywuru) (¥D
I9))TUISURI} pUR
Joe)s oIemlJos TOATOODI (N
oIseq :Iesn ‘ouTORIN 91815
‘ouIYORN 91R1S Ioker] yuIg
Iofer] yuI] | oY) Jo sedour)sul
a1} JO seduUeISUl ordrgnu seour)SUl
ordiymu sproddns yer) QUIYDRIA 991R1S
sproddns | I9[[0I3U0D © UM IoAer] yurg
UoIyMm ov)S | I9jIsuRI) puR Jo junowre oy}

ON aIemijos :ND IOATODOI :I9S() Sox Sox Sox YV Q€H YV €8¢ uo Suipuede |gD
SUOoISI[[09 joxoed
proa® 09 [eAlaul

SuIsI)IaApR

1s9q oy} Sulpuy

uo spuadop

buruunos clats :o1qrssod

IojjTuIsueI) 2a270p wIojod I9A0 9UOP 9q SUOI1)BOYTIJUSPI

yoe)s e PIMod ND jou ued QNI ur SNosUeYNUIIS

SO aIemijos olseq {IOATOODI (N ON o} :poyWI] | UOIRIISISol ‘ON VW GT¢ VW 0613 0G 15®9[1V |ZD

I9))TwIsuRI} pue
Joe)s aIemlJos IOATODOI :I9STL
oIseq :Iosn ‘ouTyORIN 91818
‘QUIYORA 9715 IoAer] yurg
Iofer] Ul | oY) JOo seour)sul
a1} JO seduRjsUI ordiymu SeoUR)SUT
ordnynu sproddns eysy QUIYDRIA 971R1S
sproddns | Io[[0I1jU0D ' M Ioker] yuIg
UOIyM 3Pe)s | I9jjIuusuel) pue JO junowre a1}
ON aremijos (N IOATODDI (D) Sox Sox Sox v €9 Vi L6T uo 3urpuaded |(TD
ajqou uorny uory JIasn oy} jo ND 2Ys jo
J0 0uU3d]q Ym sjpuowaainbaa squowaambaax -edIUNuWImod -edIunuwuod q1dg ela A[uo uorjpdwinsuod uorpdwInsuod | suoljedyYIjuapl
a[qejuawajduuy aremi}josg arempJIe peydAiouy [eUuoI102JIpPIg UOIJedIUNUILIO)) Jemodq Jamod snosuRINUIS

24
Table 6: BLE usage — Comparison of the combinations

4 Concept

ActivityStateMachine)

RegistrationActivity

[userMNotRegistered] deleteProfile

.ﬂlartnnp—» MainActivity register EditProfileActivity | ctopiop ‘

editProfils

[userReqgistersd]
saveChanges || back
\.{ BroadcastingActivity

Figure 21: State diagram representing the activities and their flow

LinkLayerState
Broadcasting Activity

+ initializeState()

+ onClickStartStopAdvertisingButton()

J

Standby State Advertising State

Figure 22: State class diagram executing the advertising script

Like JavaFX uses the class Scene to manage a scene graph, Android provides the class
Activity'? to control the UI elements. The state diagram in Figure 21 shows the different
required activities and their flow.

The MainActivity is the starting point of the app. From here it is decided whether to switch
to the RegistrationActivity or the BroadcastingActivity where the user controls the advertising
script. Also, the user can switch from the BroadcastingActivity to the EditProfileActivity to edit
or delete their profile, depending on which they return or switch to the RegistrationActivity.

Moreover, the state pattern described in the previous subsection is conceptualized within the
following class diagram in Figure 22.

The BroadcastingActivity is the context of the abstract class LinkLayerState. The subclasses
of the LinkLayerState have to implement the methods onClickStartStop AdvertisingButton() —
which is called from the context when the user wants to switch states — and initializeState() —
which is called after a state switch.

The class diagram of the entire Android application can be seen in Figure 23.

The different activities extend the abstract class AppCompatActivity'®. Moreover, the UI of
the activities is shown. Additionally, the class UserRepository manages the communication with
the REST API and is used by the RegistrationActivity and the EditProfileActivity. Moreover, the
LinkLayerState has a reference to the BluetoothAdapter'* of the device provided by the Android

12https://developer.android.com/reference/android/app/Activity
13https://developer.android.com/reference/androidx/appcompat/app/AppCompatActivity
14https://developer.android.com/reference/android/bluetooth/BluetoothAdapter

25

https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/androidx/appcompat/app/AppCompatActivity
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter

4 Concept

AppCompatActivity

[_,— BluetoothAdapter
1

UserRepository | . EditProfileActivity RegistrationActivity MainActivity BroadcastingActivity >———>| LinkLayerState
‘l—li —
E} “"=—— AdvertisingCallback

BroadcastReceiver

’— Advertising State Standby State

BluetoothAdapterStateChangeReceiver [

Last Name
.

Figure 23: Class diagram of Android application

API. Also, a reference to the AdvertisingCallback' is required to start and stop advertising.
Last but not least, the AdvertisingState registers a BluetoothAdapterState ChangeReceiver'®
which listens for the state of the BluetoothAdapter. If the BluetoothAdapter is disabled by the

user, the StandbyState is initialized.

4.4 CommunityMirror — Observer

As mentioned before, the CM acts as an observer. Therefore, the CM requires a scanning script
which needs to be integrated into the CMF.

4.4.1 Scanning Script

The CM scans for advertising packets. Therefore, the following diagram in Figure 24 — a mixture
of a state diagram and an activity diagram — will be implemented. In the state scanning the
CM constantly scans for advertising packets. Once a packet is received the packet is checked
for a personal identifier. If no personal identifier could be found in the packet the CM simply
continues scanning. Otherwise, it is checked if a user with that personal identifier is already

identified. If not, the IMS is searched for the user’s entry and their name is depicted on

Shttps://developer.android.com/reference/android/bluetooth/le/AdvertiseCallback
Yhttps://developer.android.com /reference/android /content /BroadcastReceiver

26

https://developer.android.com/reference/android/bluetooth/le/AdvertiseCallback

4 Concept

the display of the CM. Also, the user is added to the identified users. The user’s personal
disconnection timer is reset if they were already identified before. The user is detached if the

timer runs out.

4.4.2 Integration into the CommunityMirror Framework

The CMF needs to be expanded which can be seen in Figure 25. The class UsersComponent
displays the identified users on the display. Also, it controls the execution of the scanning
script with the class UsersScanningProcess. Both these classes have a reference to the class

UsersController where the identified users are added to the visualized data.

4.5 Updated Architecture

Figure 26 shows the updated architecture of the CMs. The IMS, the observers and the

broadcasters are added.

27

.—slanSca nning—»

4 Concept

Scanning

®

[Adve rtise packet received l

v

Check packet for
personal idenfifier

Mo personal identifier

Personal identifier

identified

Check if user is already 1

rN of identified

Get uzer's first name and last

name from identity
management system

v

Depict users name on the
CommunityMirror

v

-

Add user to identified users

-

Already dentified

‘ Reset disconnection timer

—stopEcanning—b@

Figure 24: Scanning script

28

4 Concept

«interfaces

Initializable

FXML Controiler

VisualComponent
/N

‘ | UsersController | ‘ B troll ‘ ‘ ‘

%

‘ ‘ PersonlitemController ‘

RFC 9372 publiziert —
Gemeinsame Arbeit von DLR
und FI CODE

AM 05.11.2019 starteten die AKIvitaten zur IETF-
‘Standardisierung von "L-band Digital Aeronautcal
Communications System (LDACS)' durch das Team Mils
Maurer (DLR), Thornas Graupl (DLR) und Corina Schmit (F1
CODE. UniBw M)

Néchste Busse ab
UniversittsstraBe:

I

2119

w
Neuperiach S0 (01 (9

2139

e

Nutzer in der Nahe:

- Max Mustermann

Figure 25: Updated class diagram of the CMF responsible for visualization and data control

CommunityMirror #1)
CommunityMirror Framework

EmETREImE
und FI CODE

P & O
TR —
<] :
CommunityMashup 7 f \ [\
Interaction CommunityMirror-Display Interaction
@%/ Interaction Interaction \%@
Broadcaster I E E roadca:
I N Broadcaster Broadcaster Broadcaster
Wordpress CMS Vo~ 7 \ u #
ser #n

User #1
/ User #2 User #3

CommunityMashup

CommunityMirror #n / CommunityMirror
Deutsche Bahn - Fahrplan Dashboard CommunityMirror
Web App Dashboard
Sgrver Server

CommunityMirror Framework

und Fl GODE

AtheneForschung EEE

Interacfion CommunityMirror-Display [Interaction
ction

@%/ Interaction Interactior

Broadcaster,
FANN

Broadcast

g
User #n+m

Broadcaster Broadcaster
User #n+1 . co
User #n+2 User#n+3

Figure 26: Updated architecture of the CMs

29

5 Implementation

This chapter covers the implementation of the concept. It starts with the implementation of
the IMS, is followed by the implementation of the user sided BLE logic and ends with the
implementation of the CM sided BLE logic. Different packages from the Node.js' package
manager are used. Also, an application is developed for the user running on Android.

The source code can be found under https://athene2.informatik.unibw-muenchen.de/

user-recognition- for-communitymirrors.

5.1 Identity Management System

The digital identities are stored in a SQLite database and can be accessed and manipulated via
REST.

5.1.1 SQLite Database

SQLite is a low scale database engine that stores the data in a single file. The package sqlite3?
is used to allow bindings to the database from the Node.js script.

sqlite3 = require(’ sqlite3 ”);

database = sqlite3.Database(’./users.db’, sqlite3. OPEN__READWRITE, ...);

database.run(CREATE TABLE IF NOT EXISTS users (uuid VARCHAR(40) PRIMARY KEY,
firstName VARCHAR(20) NOT NULL, lastName VARCHAR(20) NOT NULL)’);

5.1.2 REST API

3 is used to create a REST API to remotely access and manipulate the

The package express
data in the database.

In total, three endpoints are defined, one for posting a digital identity, another for getting a
digital identity and the last one for deleting a digital identity:
app.post(’/users/:uuid’, (request, response) => {...});
app.get(’ /users/:uuid’, (request, response) => {...});
app. (’/users/:uuid’, (request, response) => {...});

1https://nodejs.org/en
2https://www.npmjs.com/package/sqlite3
3https://www.npmjs.com/package/express

30

https://athene2.informatik.unibw-muenchen.de/user-recognition-for-communitymirrors
https://athene2.informatik.unibw-muenchen.de/user-recognition-for-communitymirrors
https://nodejs.org/en
https://www.npmjs.com/package/sqlite3
https://www.npmjs.com/package/express

5 Implementation

5.2 User — Broadcaster Advertising Script

This section focuses on the implementation of the advertising script. The following listing
shows parts of the code of the BroadcastingActivity:
BroadcastingActivity : AppCompatActivity() {

lateinit var currentLinkLayerState: LinkLayerState
lateinit var startStopAdvertisingButton: Button

override fun onCreate(savedInstanceState: Bundle?) {
.onCreate(savedInstanceState)
setContentView(R.layout.activity__ble_advertisement)

val bluetoothAdapter = getBluetoothAdapter()
val advertisingCallback = AdvertisingCallback()
currentLinkLayerState = StandbyState(, advertisingCallback, bluetoothAdapter)

startStopAdvertisingButton = findViewByld(R.id.startStopAdvertisingButton)
startStopAdvertisingButton.setOnClickListener {
currentLinkLayerState.onClickStartStop AdvertisingButton()

fun setAdvertisementState(linkLayerState: LinkLayerState) {
currentLinkLayerState = linkLayerState
currentLinkLayerState. initializeState ()

The class is the context of the state pattern and therefore contains the currentLinkLayerState.
Also, it provides functionality to switch the state. A listener is set to the startStopAdvertising-
Button to execute the functionality provided by the currentLinkLayerState when the user taps
the button.

The following listing shows parts of the code of the class AdvertisingState:

AdvertisingState(broadcastingActivity: BroadcastingActivity,
advertiseCallback: AdvertiseCallback,

bluetoothAdapter: BluetoothAdapter)
: LinkLayerState(broadcastingActivity, advertiseCallback, bluetoothAdapter) {

override fun initializeState () {
val advertiseSettings: AdvertiseSettings = AdvertiseSettings.Builder()

.setAdvertiseMode(AdvertiseSettings. ADVERTISE._ MODE_BALANCED)
.setConnectable()

31

5 Implementation

.setTimeout(0)
.set TxPowerLevel (AdvertiseSettings. ADVERTISE__TX_POWER,_ MEDIUM).build()

val advertiseData: AdvertiseData = AdvertiseData.Builder()
.setIncludeDeviceName()
.setIncludeTxPowerLevel()
.addServiceUuid(/* user’s personal identifier /)
.build ()

bluetoothAdapter.bluetoothLeAdvertiser.start Advertising(
advertiseSettings ,
advertiseData,
advertiseCallback

Here, the AdvertiseSettings* and AdvertiseData® are defined and the advertising is started
by the BluetoothLeAdvertiserS.

The AdvertiseMode defines the advertising interval. Unfortunately, the documentation
contains no information about the concrete values of the advertising intervals of the different
AdvertiseModes. Here, it is set to ADVERTISE MODE BALANCED.

The TzPowerLevel is set to ADVERTISE TX POWER MEDIUM whose dBm value is
also not mentioned in the documentation.

Most importantly, the user’s personal identifier is added to the advertised services.

The following listing shows parts of the code of the class StandbyState:

StandbyState(broadcastingActivity: BroadcastingActivity,
advertiseCallback: AdvertiseCallback,

bluetoothAdapter: BluetoothAdapter)
: LinkLayerState(broadcastingActivity, advertiseCallback, bluetoothAdapter) {

override fun initializeState () {

bluetoothAdapter.bluetoothLeAdvertiser.stopAdvertising(advertiseCallback)

The function initializeState stops the advertising.

“https://developer.android.com/reference/android/bluetooth/le/AdvertiseSettings
Shttps://developer.android.com/reference/android/bluetooth/le/AdvertiseData
6https://developer.android.com/reference/android/bluetooth/le/BluetoothLeAdvertiser

32

https://developer.android.com/reference/android/bluetooth/le/AdvertiseSettings
https://developer.android.com/reference/android/bluetooth/le/AdvertiseData
https://developer.android.com/reference/android/bluetooth/le/BluetoothLeAdvertiser

5 Implementation

5.3 CommunityMirror — Observer

This section analyzes the implementation of the observer script and its integration into the
CMF.

5.3.1 Scanning Script

The scanning script is implemented using the Node.js package noble”.

Two lists store the identified Users and the currentlyDiscoveredPeripherallds which contain the
devices whose advertising packets are currently analyzed. Also, the class User — representing
an identified user — is defined:

identifiedUsers = [];
currentlyDiscoveredPeripherallds = [J;

User {
uuid;

intervalld ;

constructor (uuid) {

.uuid = uuid;

.intervalld = .setDisconnectionInterval ();
}
resetDisconnectionInterval () {
clearInterval (. intervalld);
.intervalld = .setDisconnectionInterval ();

setDisconnectionInterval () {
setInterval () => {

identifiedUsers = identifiedUsers. filter (user => user.uuid !== .uuid);
console. log(’DISCONNECTED USER: ’, .uuid);
clearInterval (. intervalld);

}, 2000);

The User consists of an uuid — representing their personal identifier — and an intervalld —
referencing their disconnection timer. Once the User is created the disconnection timer is started
and set to two seconds. The timer can be reset with the function resetDisconnectionInterval().
If the timer runs out the User is filtered from the identifiedUsers and the disconnection is
logged on the console.

This is the executed code when an advertising packet is received:

"https://github.com/noble/noble

33

https://github.com/noble/noble

5 Implementation

noble.on("discover’, (peripheral) => {
serviceUuids = peripheral.advertisement.serviceUuids;

(serviceUuids.length > 0 && lisCurrentlyDiscoveredPeripheral(serviceUuids)) {

currentlyDiscoveredPeripherals. push(serviceUuids);

(let index = 0; index < serviceUuids.length; index++) {
peripheralServiceUuid = serviceUuids[index];
alreadyConnectedUser = identified Users.find (user => user.uuid === peripheralServiceUuid);

(alreadyConnectedUser) {
alreadyConnected User.resetDisconnectionInterval();

currentlyDiscovered Peripherals =

currentlyDiscoveredPeripherals. filter (services => services !== serviceUuids);
} {
https.get (..., response => {
(response.statusCode === 200) {

identifiedUsers . push(User(peripheralServiceUuid));
console.log(’CONNECTED USER: ’, peripheralServiceUuid);
currentlyDiscoveredPeripherals =

currentlyDiscoveredPeripherals. filter (services => services !|== serviceUuids);

D.on("error", (e) => {
console. error (e);
(index === peripheral.advertisement.serviceUuids.length — 1)
currentlyDiscoveredPeripherals =

currentlyDiscoveredPeripherals. filter (id => id !|== peripheral.id);

}
Ok
It is checked first if the peripheral is currently already discovered to prevent the simultaneous
execution of the observer script on the same peripheral. If not, it is added to the currentlyDis-
coveredPeripherallds. Now, the advertised service UUIDs are looped through and it is checked
if a user with that personal identifier is connected. If so, their disconnection timer is reset.
Otherwise, it is checked if a user with that personal identifier exists in the IMS. If that is the

case, the newly connected user is logged on the console.

5.3.2 Integration into the CommunityMirror Framework

Next, the script needs to be integrated into the CMF.

34

5 Implementation

The UsersScanningProcess is responsible for executing the scanning script on another thread
with the class ProcessBuilder®. A BufferedReader® listens to the input stream of the process
and thus receives the logs about connected and disconnected users. When a log is received
a user is either added or removed from the users list in the UsersController. Also, the class
provides functionality to stop the execution of the process.
public class UsersScanningProcess {

private final UsersController usersController ;

private Process usersScanningProcessRef;

public UsersScanningProcess(UsersController usersController) {
this.usersController = usersController;

this.startProcess ();

private void startProcess() {
final Thread usersScanningProcessThread = new Thread(() —> {
final ProcessBuilder processBuilderUsersScanning =

new ProcessBuilder("node", /* path to scanning script +/);

usersScanningProcessRef = processBuilderUsersScanning.start();
Runtime.getRuntime().addShutdownHook(new Thread(usersScanningProcessRef::destroy));

final BufferedReader bufferedReader =

new BufferedReader(new InputStreamReader(usersScanningProcessRef.getInputStream()));
String line;

while ((line = bufferedReader.readLine()) != null) {
if (line.startsWith("CONNECTED USER: ")) {

this.usersController .addUser (...);

} else {

this. usersController .removeUser (...);
b
usersScanningProcessThread.start();

public void destroyProcess() {

usersScanningProcessRef.destroy();

8https://docs.oracle.com/javase/8/docs/api/java/lang/ProcessBuilder.html
9https ://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html

35

https://docs.oracle.com/javase/8/docs/api/java/lang/ProcessBuilder.html
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html

6 Evaluation

In this chapter the prototype — consisting of the IMS, the scanning script and its integration
into the CMF and the user’s Android App — is evaluated. Therefore, the evaluation process

and its results are described. Also, the overall security of the prototype is evaluated.

6.1 Evaluation Process

The IMS runs on a server of the HCI-G which was configured with the help of Dr. Julian
Fietkau the advisor of this bachelor thesis.

The CM is simulated by a Microsoft Surface Pro 6 running Windows 10 Pro Version 21H2.
It is additionally equipped with the USB-BT400 Bluetooth Adapter by Asus. The surface runs
the CMF with the integrated scanning script.

The users are simulated by three smartphones — see Table 7 — which run the Android
application.

Figure 27 shows the floor plan of the test room. Six points are selected in the room from

where it is tried with all smartphones to identify in three different scenarios:
e Scenario 1: No other user is identified
e Scenario 2: One other user is identified
o Scenario 3: Two other users are identified

Each smartphone sends the personal identifier for an interval of 30 seconds. In all these
scenarios the identification speed is measured manually with a stopwatch and the number of

untriggered detachments is documented.

6.2 Results

Table 8 shows the results of the evaluation.

Smartphone-Model | Android-Version | Android-API-Level
Device A | Samsung Galaxy A52 13 33
Device B | Samsung Galaxy A32 13 33
Device C Google Pixel 4a 13 33

Table 7: Technical specifications of the smartphones that simulate the users

36

6 Evaluation

Point F
(Dist =70.4 m)
Point D
(DSt =05 m)
Point E
(DSt =5.8 m)
Point C
(Dist =4.6m)
Paoint B
(Vs =4 m)
Point A
(DISE =1.5 m)
Y—_"
—_ CommunityMirror

AT

Figure 27: Floor plan of the test room with the position of the CM and the different points
from where the user tries to be identified

37

6 Evaluation

(8av) 0

syuow

-goelaq
pa123311yun)
Jo Jaqunpn

(8av) g6°0

18°0

11T

VI'T

VI'T

GE'T

¥6°0

08°0

1280

180

180

20T

¥.°0

0c'T

J9s ul paadg
uorjyedyIjuapy

9

d

jurog

d

201A0(J

¢ oLIeu{dg

(8avy) 9z°0

sjyuaux
-goelaq
po1a33r1jun
Jo JequnN

(8ay) 10T

88°0

180

a1

ve'T

8C'1T

180

AN

g6°0

00T

20T

180

98°0

00T

080

J9s ul paadg
uonjeoguapy

a

)

d

jurog

d

201A9 (g

7 OLIBRUDDS

(3av) g0

sjyuaun

-yoeja(q
po1a33r1jun
Jo JaqunN

(8av) z1°1

q'c

<t

€9°C

99°0

A

8T

V1

290

G0

¥.°0

4

g8'0

180

6.°0

19°0

890

J9s ul paadg
uoryeoyniuspl

a

)

d

jurog

(O}{@]

d

201A0(J

T olIeuUa{dgS

means that no measurements could be taken as the

Table 8: The results of the evaluation (

personal identifier could not be received)

38

6 Evaluation

What can be seen directly is that the personal identifier sent by device C from points D,
E and F could not be received by the CM in all three scenarios. The reason for that is most
likely low performing Bluetooth hardware. This might also explain the amount of untriggered
detachments of device C from the three nearest points A, B and C.

The overall identification speed is mostly lower at the points A, B and C and higher at the
points D, E and F, most likely due to the higher distance between these points and the CM.
Also, there is a correlation between distance and the amount of untriggered detachments.

Testing in different scenarios did not have a huge impact on the measurements. But
surprisingly the average identification speed and the average number of untriggered detachments
declined slightly. Here the opposite behaviour would have been expected as there might be
signal collisions on the three advertising channels. Obviously, collisions did not seem to
have a manually measurable impact for three devices and the slight decline might be due to
inconsistencies in the manual measurements.

During the evaluation the scanning script crashed approximately every 10 minutes. A restart
was possible after invalidating the caches of the extended CMF using IntelliJ. The cause of the
problem could not be found but most likely there is a problem with the used BLE API noble
which was last updated in 2018.

6.3 The Security of the Prototype

Security is not taken into account during the development of the prototype. Nevertheless, it
should be analyzed in case a secure version of the prototype will be implemented in the future.

The security issue of the prototype is the unencrypted and undirected transmission of the
user’s personal identifier during the identification. Spoofers can simply read the user’s advertised
personal identifier and misuse it to identify in the name of that user. The bachelor thesis of
Teaca on the Design of an encryption protocol for BLE advertising traffic might be a good
starting point for fixing that problem (Teaca, 2019).

Also, as the REST endpoints are not secured, spoofers can call these endpoints if they know
the URL of the server which runs the IMS. With this information the user’s digital identity can
be manipulated and even deleted.

Last but not least, the REST endpoint for the insertion of a new user can be misused by

flooding it with insertions which could result in a denial of service.

39

7 Conclusion

The HCI-G strives for a practical solution to identify interacting users of the CMs which are
ubiquitious user interfaces for community awareness. Therefore, this bachelor thesis discusses
the use of BLE for user identification in the context of the CMs and develops a prototype
without focusing on authentication and security overall.

The context of the prototype, meaning the software of the CMs, the overall architecture of the
CMs and the fundamentals of BLE — the BLES, the power consumption of BLE and direction
finding using BLE — are discussed. Related work by the HCI-G and other institutions is analyzed
and used as a foundation to conceptualize a prototype. The four different combinations to use
BLE are elaborated from analyzing the GAP roles of the BLES and compared:

C1: CM as central and user as peripheral

C2: CM as observer and user as broadcaster

e (C3: CM as peripheral and user as central

e C4: CM as broadcaster and user as observer

C1 and C3 turn out to be the most efficient combinations but unfortunately neither can be
chosen for the implementation due to a lack of maintained and powerful BLE APIs for the OS
of the CMs — Windows. Thus, the rather inefficient C2 is chosen for the implementation as the
main priority of this bachelor thesis is the implementation of a working prototype. Changes to
the architecture of the CMs and to the CMF are documented, as well as the implementation of
a scanning script for the observer and an Android App for the broadcaster. Moreover, an IMS
which manages the digital identities of the users is conceptualized and implemented. It can be
accessed through REST. The evaluation of the prototype is done by simulating up to three
identifying users at the same time. The evaluation shows the capabilities to identify all users
reliably and quickly in a range of at least five meters. Nevertheless, the scanning script crashes
about every ten minutes. The reason for that could not be found, but it is likely that the error
lies in the used BLE API. Also, there are security issues as security is not focused during the
development of the prototype.

From here on there are multiple research areas.

First of all, it could be reevaluated if the inefficiency of the implemented C2 is tolerable and

if not C1 or C3 could be implemented. In that case it is strongly advised to use an external and

40

7 Conclusion

programmable micro controller with a powerful BLE API to execute the CM sided BLE logic.
If it is wished to continue with C2 the crash of the scanning script needs to be fixed. Also,
the security issues need to be fixed, meaning securing the REST endpoints and encrypting the
communication via BLE.

Last but not least, direction finding methods using BLE could be additionally implemented

to only identify users who are standing in front of the CM.

41

Acronyms

AoA Angle of Arrival. 13, 43

AoD Angle of Departure. 13, 43

APl Application Programming Interface. 18, 19, 23, 25, 26, 30, 36, 39, 40, 41

ATT Attribute Protocol. 5, 9, 10

BLE Bluetooth Low Energy. 1, 2, 5, 6, 11, 12, 14, 15, 16, 17, 18, 19, 22, 24, 30, 39, 40, 41, 45

BLES Bluetooth Low Energy Stack. 1, 3, 5, 17, 23, 40

CM CommunityMirror. 2, 3, 14, 15, 17, 18, 19, 20, 21, 22, 24, 26, 27, 30, 36, 37, 39, 40, 41, 44,
45

CMF CommunityMirror Framework. 3, 5, 15, 26, 27, 29, 33, 34, 36, 39, 40, 43, 44

CMs CommunityMirrors. 1, 3, 4, 18, 27, 29, 40, 43, 44

GAP Generic Access profile. 5, 9, 15, 18, 19, 40, 45

GATT Generic Attribute Profile. 5, 10, 12, 15, 16, 19, 20, 21, 43

HCI-G Human-Computer-Interaction Group. 1, 14, 36, 40

IMS Identity Management System. 1, 2, 15, 17, 18, 19, 20, 23, 24, 26, 27, 30, 34, 36, 39, 40, 43
OS Operating System. 15, 23, 40

REST Representational State Transfer. 18, 20, 22, 25, 30, 39, 40, 41

RFID Radio-Frequency Identification. 14

Ul User Interface. 3, 25

UUID Universally Unique Identifier. 10, 17, 34

42

List of Figures

1 The architecture of the project containing the CMs (https://publicwiki.
unibw.de/display/MCI/CommunityMirror+-+Grundarchitektur+und+Wording) 4
2 JavaFX application structure (https://de.wikipedia.org/wiki/JavaFX##/media/

Datei:Javafx-stage-scene-node.svg) 4
3 JavaFX Node(https://de.wikipedia.org/wiki/JavaFX##/media/Datei:Javafx-layoutdASclasses
SVO) e e e e e e e 4

4 Parts of the class diagram of the CMF responsible for visualization and data con-
trol (https://athene2.informatik.unibw-muenchen.de/CM/communitymirrorframework3) 5
Bluetooth Low Energy Stack (The Bluetooth Low Energy Primer, 2023, p. 10) 6
Link Layer Packet (The Bluetooth Low Energy Primer, 2023, p. 16) 7
The Link Layer State Machine (The Bluetooth Low Energy Primer, 2023, p. 18) 8
A write-request by the client (The Bluetooth Low Energy Primer, 2023, p. 63) 10
A notification by the server (The Bluetooth Low Energy Primer, 2023, p. 63) . 10
10 The hierarchic structure of the GATT (The Bluetooth Low Energy Primer, 2023,
D 67) o 10

11 Average power consumption of broadcaster and observer with different advertising

© 00 g O Ot

intervals, scanning intervals and scanning windows (Montanari et al., 2017) . . 12
12 Transmission power levels and their transmission ranges (Qureshi et al., 2018) . 12
13 AoA (Bluetooth Core Specification, 2019, p. 281) 13
14 AoD (Bluetooth Core Specification, 2019, p. 283) 13
15 Singh’s proposed architecture (Singh, 2018, p. 36) 15
16 The identity reader and the identity holder containing the identity service

(Sakkopoulos et al., 2019, p. 4)o 16
17 The Entity-Relationship diagram for the IMS 18
18 Bluetooth Low Energy Usage — Combination 1 /2 21
19 Bluetooth Low Energy Usage — Combination 3 /4 22
20 User — State pattern for broadcasting 0L 23
21 State diagram representing the activities and their flow 25
22 State class diagram executing the advertising script 25
23 Class diagram of Android application. 26
24 Scanning script 28

43

https://publicwiki.unibw.de/display/MCI/CommunityMirror+-+Grundarchitektur+und+Wording
https://publicwiki.unibw.de/display/MCI/CommunityMirror+-+Grundarchitektur+und+Wording
https://de.wikipedia.org/wiki/JavaFX####/media/Datei:Javafx-stage-scene-node.svg
https://de.wikipedia.org/wiki/JavaFX####/media/Datei:Javafx-stage-scene-node.svg
https://de.wikipedia.org/wiki/JavaFX####/media/Datei:Javafx-layout–classes.svg
https://de.wikipedia.org/wiki/JavaFX####/media/Datei:Javafx-layout–classes.svg
https://athene2.informatik.unibw-muenchen.de/CM/communitymirrorframework3

25
26

27

List of Figures

Updated class diagram of the CMF responsible for visualization and data control 29
Updated architecture of the CMs 29

Floor plan of the test room with the position of the CM and the different points

from where the user tries to be identified 37

44

List of Tables

The different layers of the host (The Bluetooth Low Energy Primer, 2023, p. 12) 6
2 The different layers of the controller (the Isochronous Adaption Layer is ignored

as it only matters for BLE Audio) (The Bluetooth Low Energy Primer, 2023, p. 12) 6
3 The four GAP roles (The Bluetooth Low Energy Primer, 2023, p. 71). 9
4 Average power consumption depending on the following parameters: advertising

interval (the average current for an advertising interval of 20 ms seems to be an

inconsistency), advertising data length, connection interval and peripheral latency 11

5 Power consumption of user and CM depending on the GAP roles (Estimated by

using the data from 2 2.3) Lo 19
6 BLE usage — Comparison of the combinations 24
7 Technical specifications of the smartphones that simulate the users 36

non

The results of the evaluation ("-" means that no measurements could be taken

as the personal identifier could not be received) 38

45

Bibliography

Akiyama, S., Morimoto, R., & Taniguchi, Y. A Study on Device Identification from BLE
Advertising Packets with Randomized MAC Adresses. In: In 2021 IEE International
Conference on Consumer Electronics-Asia (ICCE-Asia). Kindai Universityy. 2021. https:
//doi.org/10.1109/ICCE-Asia53811.2021.9641870.

Bluetooth Core Specification (v5.1). (2019). Bluetooth Special Interest Group. https://www.
bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457080

Camp, J. (2004). Digital identity. IEEE Technology and Society Magazine, 23(3), 34—41.
https://doi.org/10.1109/MTAS.2004.1337889

Eisenlohr, A. (2021). Konzeption und Implementierung einer Anwendung zur Identifikation mit

Mobilgerdten (Bachelor thesis). Universitit der Bundeswehr Miinchen.

Fietkau, J., & Stojko, L. (2021). Activity support for seniors using public displays: A proof of
concept. In S. Schneegass, B. Pfleging, & D. Kern (Eds.), Mensch und computer 2021 —
tagungsband (pp. 199-203). Association for Computing Machinery. 1SBN: 978-1-4503-8645-6.
https://doi.org/10.1145/3473856.3474002

Guillaume Celosia, M. C. Fingerprinting Bluetooth-Low-Energy Devices Based on the Generic
Attribute Profile. In: In 2nd International ACM Workshop on Security and Privacy for the
Internet-of-Things. 2019. https://doi.org/10.1145/3338507.3358617.hal-02359914.

Jaimin, A. (2021). BLE Power Optimization Parameters (tech. rep.). BuildStorm. https:
//buildstorm.com/blog/ble-power-optimization-parameters/.

Leach, P. J., Salz, R., & Mealling, M. H. (2005). A Universally Unique IDentifier (UUID) URN
Namespace. https://doi.org/10.17487/RFC4122

Montanari, A., Nawaz, S., Mascolo, C., & Sailer, K. A Study of Bluetooth low Energy Perfor-
mance for Human Proximity Detection in the Workplace. In: In 2017 IEEE Conference
on Pervasive Computing and Communications (PerCom). University of Cambridge and
University of College London. 2017. https://doi.org/10.1109/PERCOM.2017.7917855.

Nilsson, D. (2022). Identifying Bluetooth low Energy Devices via Physical-Layer Hardware

Impairments (Exam work). Uppsala Universitet.

46

https://doi.org/10.1109/ICCE-Asia53811.2021.9641870
https://doi.org/10.1109/ICCE-Asia53811.2021.9641870
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457080
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457080
https://doi.org/10.1109/MTAS.2004.1337889
https://doi.org/10.1145/3473856.3474002
https://doi.org/10.1145/3338507.3358617.hal-02359914
https://buildstorm.com/blog/ble-power-optimization-parameters/
https://buildstorm.com/blog/ble-power-optimization-parameters/
https://doi.org/10.17487/RFC4122
https://doi.org/10.1109/PERCOM.2017.7917855

Bibliography

Nilsson, D., & Yan, W. Identifying Bluetooth Low Energy Devices. In: In 21: Proceedings of
the 19th ACM Conference on Embedded Networked Sensor Systems. Uppsala University.
2021. https://doi.org/10.1145/3485730.3492880.

Ott, F. (2018). CommunityMirrors: Interaktive Grofbildschirme als ubiquitire Natural User
Interfaces fir Kooperationssysteme - Ein konzeptionelles Rahmenwerk soziotechnischer
Gestaltungsparameter und Potenziale zur Verbesserung der peripheren Informationsver-
sorgung in kollaborativen Wissensprozessen (Doctoral dissertation) [retrieved on the 23rd
May 2023]. Universitat der Bundeswehr Miinchen. https://athene- forschung.unibw.
de/doc/122536/122536.pdf

Qureshi, U. M., Umair, Z., Duan, Y., & Hancke, G. P. Analysis of Bluetooth Low Energy (BLE)
Based Indoor Localization System with Multiple Transmission Power Levels. In: In 2018
IEEFE 27th International Symposium on Industrial Electronics (ISIE). City University of
Hong Kong. 2018. https://doi.org/10.1109/ISIE.2018.8433787.

Sakkopoulos, E., Ioannou, Z.-M., & Viennas, E. Mobile Personal Information Exchange over
BLE. In: In 2018 9th International Conference on Information, Intelligence, Systems
and Applications (IISA). University of Piraeus and University of Patras. 2019. https:
//doi.org/10.1109/I1SA.2018.8633599.

Saputra, D., Gaol, F. L., Abdurachman, E., Sensuse, D. I., & Matsuo, T. (2022). Designing and
testing of Bluetooth Low Energy (BLE) system for small wooden boat identification and
e-certification. SN Applied Sciences. https://doi.org/10.1007/s42452-022-05021-z

Shan, G., Im, S.-y., & Roh, B.-h. Optimal AdvInterval for BLE Scanning in Different Number of
BLE Devices Environment. In: In 2016 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS): Student Activities. Ajou University. 2016. https:
//doi.org/10.1109/INFCOMW.2016.7562238.

Singh, R. K. (2018). Designing a Mobile Identification and User-Profile Solution for an Urban
IoT Network (Master thesis). Technische Universitat Miinchen.

Teaca, 1. (2019). Design of an encryption protocol for BLE advertising traffic (Bachelor thesis).

Vrije Universiteit Amsterdam.

The Bluetooth Low Energy Primer (1.1.0). (2023). Bluetooth Special Interest Group. https:
//bluetooth.com/wp-content/uploads/2022/05/The-Bluetooth-LE-Primer-V1.1.0.
pdf

47

https://doi.org/10.1145/3485730.3492880
https://athene-forschung.unibw.de/doc/122536/122536.pdf
https://athene-forschung.unibw.de/doc/122536/122536.pdf
https://doi.org/10.1109/ISIE.2018.8433787
https://doi.org/10.1109/IISA.2018.8633599
https://doi.org/10.1109/IISA.2018.8633599
https://doi.org/10.1007/s42452-022-05021-z
https://doi.org/10.1109/INFCOMW.2016.7562238
https://doi.org/10.1109/INFCOMW.2016.7562238
https://bluetooth.com/wp-content/uploads/2022/05/The-Bluetooth-LE-Primer-V1.1.0.pdf
https://bluetooth.com/wp-content/uploads/2022/05/The-Bluetooth-LE-Primer-V1.1.0.pdf
https://bluetooth.com/wp-content/uploads/2022/05/The-Bluetooth-LE-Primer-V1.1.0.pdf

I hereby certify that I have written this paper independently, that no sources and aids
other than those indicated have been used, and that all citations have been properly

marked.

Furthermore I acknowledge having received the information overview concerning the
usage rights regarding the Bachelor thesis. I grant Universitat der Bundeswehr Miinchen
the non-exclusive publication rights to my Bachelor thesis.

Neubiberg, 26.05.2023

Christopher Lyko

	Introduction
	(Technical) Fundamentals
	The Architecture of the CommunityMirrors
	The Bluetooth Low Energy Stack
	The Physical Layer
	The Link Layer
	The Generic Access Profile – the Roles
	The Attribute Protocol
	The Generic Attribute Profile

	Power Consumption of Bluetooth Low Energy – Influencing Parameters
	Advertising Parameters
	Connection Parameters
	Scanning Parameters
	Transmission Power Level

	Direction Finding Using Bluetooth Low Energy
	Angle of Arrival
	Angle of Departure

	Related Work
	Previous Studies at the Human-Computer-Interaction Group
	Other Studies

	Concept
	Identity Management System
	Choosing the Bluetooth Low Energy Roles
	C1 – CommunityMirror as Central and User as Peripheral
	C2 – CommunityMirror as Observer and User as Broadcaster
	C3 – CommunityMirror as Peripheral and User as Central
	C4 – CommunityMirror as Broadcaster and User as Observer
	Comparison and Selection

	User – Broadcaster
	Choosing the Broadcasting Device and Operating System
	Advertising Script
	Android Application

	CommunityMirror – Observer
	Scanning Script
	Integration into the CommunityMirror Framework

	Updated Architecture

	Implementation
	Identity Management System
	SQLite Database
	REST API

	User – Broadcaster Advertising Script
	CommunityMirror – Observer
	Scanning Script
	Integration into the CommunityMirror Framework

	Evaluation
	Evaluation Process
	Results
	The Security of the Prototype

	Conclusion
	Acronyms
	List of Figures
	List of Tables
	Bibliography

