
Using hash visualization for real-time user-governed
password validation

Julian Fietkau
julian.fietkau@unibw.de

Bundeswehr University Munich

Mandy Balthasar
mandy.balthasar@unibw.de

Bundeswehr University Munich

Figure 1: Six example images generated by the MosaicVisualHash algorithm based on random input data.

ABSTRACT
Building upon work by Perrig & Song [21], we propose a
novel hash visualization algorithm and examine its useful-
ness for user-governed password validation in real time.

In contrast to network-based password authentication and
the best practices for security which have been developed
with that paradigm in mind, we are concerned with use
cases that require user-governed password validation in non-
networked untrusted contexts, i.e. to allow a user to verify
that they have typed their password correctly without ever
storing a record of the correct password between sessions
(not even a hash). To that end, we showcase a newly designed
hash visualization algorithm named MosaicVisualHash and
describe how hash visualization algorithms can be used to
perform user-governed password validation. We also provide
a set of design recommendations for systems where hash
visualization for password validation is performed in real
time, i.e. as the user is in the process of typing their password.

CCS CONCEPTS
• Security and privacy → Authentication; • Human-
centered computing → Human computer interaction.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
MuC’19 Workshops, Hamburg, Deutschland
© Proceedings of the Mensch und Computer 2019 Workshop on Usable
Security and Privacy Copyright held by the owner/author(s).
https://doi.org/10.18420/muc2019-ws-302-04

KEYWORDS
hash visualization, image recognition, password masking,
usable security, authentication, human-computer interaction

1 INTRODUCTION
This work was created as a follow-up to an idea by Perrig &
Song [21] in order to introduce the human cognitive ability to
perceive and remember structured images into the password
validation process.

The work of Perrig & Song [21] is based on the assumption
that it is difficult for people to compare or memorize sym-
bols that are strung together without an underlying meaning.
This assumption is supported by the results of G. A. Miller
[18] as well as Stuart K.Card et al. [4] on the possibilities
and limits of man in the processing of information. The aim
of Perrig & Song’s work was to replace this human process-
ing weakness with a strength. Thus, in selected scenarios,
the validation of root keys in public key infrastructures and
user authentication were to be facilitated, protecting sys-
tem access from specific kinds of human errors. The human
weakness with respect to character sequences was replaced
by a human strength in the processing of structured images.
Perrig & Song proposed a prototype based on a requirements
analysis. A hash visualization was used for the root key vali-
dation. The generated images could be compared by humans
more easily than the character strings that were commonly
used. The fact that humans can recognize and compare col-
ors, shapes and patterns excellently has already been proven
several times before. Work by R. M. Boynton and D. E. Boss
[3] as well as R. E. Reynolds et al. [22] or also L. G. Williams
[28] at the end of the sixties to the beginning of the seven-
ties underlines the human strength of image recognition. In
the user authentication scenario, Perrig & Song replaced the

https://doi.org/10.18420/muc2019-ws-302-04

MuC’19 Workshops, Hamburg, Deutschland Fietkau et al.

input of a number in the form of a password or PIN with
the recognition of a known image. Perrig & Song pursued
the idea of using a primitive hash visualization as a solu-
tion. For this, they analyzed the necessary requirements and
proposed Andrej Bauer’s Random Art algorithm [2] as a pro-
totypical solution (see figure 2). The aim was to show how
hash visualization can be used to increase security for root
key validation and user authentication. In the Perrig & Song
scenario, each user knows a small number of images from
a previously defined portfolio. For authentication, the user
is shown a selection of images that they can mark if they
recognize them from the known portfolio.

Based on the preparatory work done by Perrig & Song [21],
this paper focuses on use cases where a user is interested
in validating a password that they have entered, even if the
application is unable to provide secure automatic validation.
One such real-world use case is the use of a password as a
deterministic seed for a crypto key in a local software process.
Therefore, this paper does not consider the implications of
using a password for network-based authentication. If an
incorrect password is provided to the application without
any opportunity for error-correction, useless data is output
without the software being able to notice. In the scenario
under consideration, a user types in their password and at the
same time needs to be able to ensure that the input is error-
free without the typed password being visible on screen.
The background of the scenario lies in an untrusted context,
in which the storage of a password hash, for example in
the browser, can present a security problem. The currently
common method of authentication is by comparing the data
provided by the user with the data stored by the computer.
Instead of the widespread method of the comparison of a
previously stored hash value by the machine, the comparison
in this work is carried out by humans using a visualized hash
value. The authentication as assertion of an identity remains
the same as in conventional methods, but the authentication
as verification of the assertion is taken over by the user and
only the authorization, i.e. the actual granting or denial of

Figure 2: Example outputs of Andrej Bauer’s Random Art
algorithm [2], used by Perrig & Song [21] for hash visualiza-
tion. The algorithm was not invented for this purpose, but
fits the use case easily since it deterministically generates a
structured image from a bit sequence.

rights, is performed by the machine. The insecure storage of
a hash value is thus superfluous and the associated security
risk can be avoided.

In contemporary GUI systems, password input fields typi-
cally employ password masking as a security measure. When
a character is typed into a password field, an asterisk or
a circle (or another masking character) is shown instead
of the typed character, which remains invisible on screen.
The assumption is that other people who can see the screen
(“over-the-shoulder attackers”) should be prevented from
reading the password. One downside to this approach is that
the user cannot read the password they just typed either,
so the ability to quickly see and correct typing mistakes is
vastly reduced.

Even though it is near-ubiquitous, password masking has
received criticism by user researchers, typically centering on
the inability of users to check at a glance whether the pass-
word has been typed correctly [13, 19, 25, 30]. In real-world
systems, there has been a shift away from strict password
masking in recent years, e.g. with “show password” toggles
appearing increasingly often and mobile devices showing
the last typed password character in the password field for
a brief amount of time. A few existing proposals for better
password masking will be shown in section 2.
In addition to password-based authentication schemes,

there are situations in which humans are asked to verify or
compare hash values, such as when hash-based checksums
are provided for file downloads, or when a user logs into a
remote server and the client asks them to verify the server
fingerprint (seen e.g. in the “Secure Shell” software). In those
cases, the hash values are usually provided as a number se-
quence, most commonly in hexadecimal format, and require
tedious and error-prone manual comparison.
We have developed a novel algorithm that visualizes a

number sequence (e.g. a hash) as an image consisting of
overlapping circle segments using a limited color palette,
which provides a visual impression similar to abstract mo-
saics or stained glass windows. We have then implemented
our algorithm into a demo application that uses it to visualize
password hashes in real-time as the user types a password1.
This article describes our algorithm step by step, gives con-
text for our use case, and outlines further measures we have
taken to make the hash visualization accessible to humans
while safeguarding against various attacks.

The contributions that this article aims to provide con-
sist of (a) the specification of user-governed password val-
idation as a use case for password hash visualization, (b)
the MosaicVisualHash algorithm, and (c) our design recom-
mendations for secure and usable implementations of hash

1An interactive demo can be tested here:
https://jfietkau.github.io/Mosaic-Visual-Hash/demo-password.html

https://jfietkau.github.io/Mosaic-Visual-Hash/demo-password.html

MuC’19 Workshops, Hamburg, Deutschland

$ ssh example.com
Host key fingerprint is ...
+- -[ECDSA 256]- - -+
|o E+*o*|
| .o+...o=.=+|
| oo+o..*.oo|
| ooo * *+*|
| .S. o +*++|
| . .. *o|
| .oo|
| . o|
| . |
+- - -[SHA256]- - - -+

Figure 3: Since release version 5.1, theOpenSSH software has
offered the option of visualizing the host key of the server
that the user is connecting to as a piece of ASCII art using a
random walk algorithm. See Loss et al. [17] for details.

visualization for user-governed password validation. The
focus of this work is thus on secure operability and the user
experience of user-governed password validation, in order
to provide a usable and secure process for the user in cases
where automatic validation of the entered password is not
viable. At the same time, the validation process is embedded
in a positive user experience, as it makes use of image recog-
nition, a strength of human cognition. In addition, the effects
of color theory may stimulate the user positively during the
validation process.

2 RELATEDWORK
This article builds directly on the work presented by Per-
rig & Song [21], who introduce a definition and a number
of quality requirements for Hash Visualization Algorithms
(HVA). They also examine Random Art [2] as a possible im-
plementation and provide a method for statistical analysis
of the likelihood of random image collisions. Dhamija [11]
expands upon the “image portfolio” idea of using hash vi-
sualizations for passwordless user authentication, which is
distantly related to the approach we pursue here.
Since Perrig & Song’s original publication [21], a small

number of software projects have put their idea of hash
visualization into practice, perhaps the widest-known one
being OpenSSH’s visual fingerprint [17]. Their use case is the
verification of a server key fingerprint, which has tradition-
ally been displayed as a series of hexadecimal numbers. The
visual fingerprint adds a simple image based on a random
walk algorithm to the key verification form (see figure 3).
Cipriani [6] extends this implementation to showcase visual
improvements that would be possible if compatibility with
legacy systems were not a priority for OpenSSH. The IBM

Figure 4: Schematic recreation of an IBM Notes 9 user au-
thentication dialog. As the user types their password, the
keys shown in the image on the left change position, size
and color. Before submitting their password, the user can
check if the image is the same as always – if not, the pass-
word has been entered incorrectly.

Notes software suite offers a dynamic visualization to allow
users to verify their own password as it is being typed (see
figure 4), which is in essence the same approach we pursue
in this article, although the algorithm in question has not
been published and we do not know if it makes any use of
hashing. From seeing its output, we get the impression that
it is much simpler and more prone to image collisions than
the other HVAs mentioned.
There are also several standalone HVAs that have been

developed and published over the years, such as Identicon
[20], Vash [7], Robohash [10] and vizHash [23].

The aforementioned HVAs all produce relatively large and
complex images. In contrast, there have been a number of
HVA implementations for real-time password validation that
restrict their visualizations to the password field itself. Exam-
ples of this approach are Chroma-Hash [27], HashMask [9]
and Paul Sawaya’s work on visual hashing [24]. By aiming
to be integrated into existing password GUIs without any
redesign, these implementations are constrained to a very
small space, hence the image complexity that they can offer
is reduced compared to HVAs intended for larger, separate
images such as the one presented in this paper. Additionally,
the password masking characters can potentially encroach

Figure 5: Three separate implementations of password hash
visualization within the password input field. From top to
bottom: Chroma-Hash [27], Paul Sawaya’s visual hashing
[24] and HashMask [9].

MuC’19 Workshops, Hamburg, Deutschland Fietkau et al.

on the visualization, when given a password of sufficient
length. See figure 5 for example visualizations of these algo-
rithms.
Outside of hash visualization, other approaches for real-

time user-governed password validation have been proposed.
Chris Dary’s HalfMask [8] shows password input charac-
ters as plain text, but visually overlays several nonsense
characters onto each real character, effectively rendering the
password unreadable but retaining some visual recognizabil-
ity for the user. Khamis et al. [15] showcase the similarly
functioning Passquerade, which renders the textual password
through an image filter that distorts the characters andmakes
them mostly illegible. The idea behind the approach is that
the user, who has knowledge of the correct password, is able
to see any typing mistakes even in the distorted characters,
whereas an over-the-shoulder attacker who does not know
the password is unable to read it. Khamis et al. demonstrate
some empirical success. Gruschka and Lo Iacono [12] pro-
pose TransparentMask, a system in which different shapes
and colors are used for masking characters, either per charac-
ter or after character groups of specific lengths. Their work
also includes a stochastic risk assessment.
Chatterjee et al. [5] aim to attack the problem of typ-

ing mistakes in user passwords from the other direction
by providing typo-tolerant password authentication. In their
scenario, a network-based password authentication system
would still require the password to be mostly correct, but
would accept common typos in the correct password instead
of requiring an exact match.
Tan et al. [26] present a detailed study of public key fin-

gerprint comparison methods, including several hash visu-
alizations in addition to numerous textual and numerical
representations. They conclude that visual representations
can significantly improve the user experience of the com-
parison process, and that the visualization algorithm should
be carefully chosen with robustness in mind for scenarios
where man-in-the-middle attacks are a concern.

To summarize, previous work has been published on hash
visualization in general and in relation to user authentica-
tion, including work on password hash visualization within
password input fields, as well as ideas for user-governed
password validation via novel kinds of password masking
or other ideas. As far as we can tell there has as yet been no
scientific inquiry into hash visualization for user-governed
password validation as a dedicated GUI element showing
images of higher complexity, which is the combination of
ideas presented in this article.

3 ALGORITHM
MosaicVisualHash is an algorithm that turns a bit sequence
of arbitrary length into an image. The conversion process

does not take the requirements of cryptographic hash func-
tions into account. If MosaicVisualHash is used for password
visualizations, a suitable hash function (such as SHA-256)
should be used as an intermediate step before the input is
passed to the algorithm.
The visualization has two configurable parameters that

influence the number of input bits the algorithm can use:
the number of curves and the number of colors in the image.
The default values are 6 and 3 respectively, but the system
designer can adjust these values. The upper bound to the
number of input bits is then calculated as number-of-curves×
24 + number-of-colors × 8 + 16, or 6 × 24 + 6 × 8 + 128 = 320
for the default parameter values. The visualization process
needs exactly that number of bits, so depending on the length
of the input bit sequence, the preparation portion of the
algorithm can perform either a collapse or an extension of
the input bits. If more than the required number of input
bits is provided, the bits at indexes larger than the maximum
are combined with the previous input bits by performing a
modulo operation on the index and an XOR operation on
the new input bit and the corresponding earlier bit. This is
to ensure that every input bit has an influence on the final
image. If the input bit sequence is too short to serve as the
visualization basis, it is simply repeated.

MosaicVisualHash then splits the resulting bit sequence
into a number of segments. The first segment of length
number-of-curves × 16 describes the individual parameters
of the curves that appear in the image. The algorithm uses
16 bits for each curve. Three bits are used for the curvature
(or in other words, the radius of the circle segment), five
for the rotation angle, and four each for the X and Y dis-
placement. The second segment is the basis for the color
palette. Each color uses 16 input bits from the sequence. The
first color uses 8 bits for the hue and another 8 bits for the
luminance. After that, the details of how the remaining bits
are converted into colors depends on the number of colors
requested. If just one color is requested, nothing else hap-
pens. For two or three colors, MosaicVisualHash attempts
to pick complementary colors in order to ensure a visually
pleasing image. The individual areas of the image are colored
based on the remainder of the number of overlaid circles at a
specific point divided by the number of available colors, en-
suring that neighboring areas receive distinct colors where
possible.

The input bit sequence has no direct influence on the color
of the curve contours. The system designer can set this color
to a fixed value, or if none is provided, MosaicVisualHashwill
attempt to pick either black or white as a contrast depending
on the average luminance of the other colors in the image.
Figure 1 shows several example images produced by Mo-

saicVisualHash based on random input data.

MuC’19 Workshops, Hamburg, Deutschland

MosaicVisualHash was developed with the consideration
that the resulting images should be relatively pleasing to the
average user’s visual preferences. We have not attempted to
verify empirically whether we have been successful in that
regard.

It is worth noting that the images created by MosaicVisu-
alHash, when used in a security-related context, rely in part
on the user’s ability to recall and differentiate the colors used
in the image. This process in turn depends on the algorithm
making sensible color selections as well as the user’s color
sensing capability.
For the color selection, the algorithm takes a number of

steps to ensure that the colors are high in contrast and satu-
ration. First, the algorithm is restricted to a slice of the hue,
saturation, lightness color space [16] that always maximizes
the saturation and that removes the darkest 20% as well as
the lightest 10% of the remaining colors from the possible
palette. This happens in order to ensure that picking several
colors of different hues will certainly lead to sufficiently dif-
ferent colors, even if many or all of them happen to be very
high or low in lightness. See figure 6 for a visualization of the
color space. For the first color to be chosen, the algorithm
always maps its input bits onto this color space for a pseudo-
random result. If a palette of two or three colors is requested,
the remaining colors are chosen by moving a specific range
of distances in the hue dimension (again influenced by the
input bits) to make it highly likely for contrasting colors to
be picked. If four or more colors are requested, MosaicVisual-
Hash picks them via consecutive jumps by the golden angle
along the hue circle, a process that maximizes the distance
between colors for an indeterminate palette size [1].

Regarding the user’s ability to differentiate the colors pre-
sented, we make no specific claims. Color sensitivity varies
across populations, with non-negligible portions of all hu-
mans suffering from some kind of color vision deficiency
such as red-green blindness [29]. Design recommendations
for systems that are accessible to users with vision deficien-
cies generally focus on ensuring that colors are picked in
such a way that they are sufficiently differentiable for all
users [14]. In the case of password hash visualization, it is
not a major concern whether all users perceive the provided
images the same way, or whether the perceived color con-
trast is comparable across the user population. The central
goal is to ensure that a specific user will perceive the same
image the same way every time, which is not something that
requires any particular color choice considerations. Thus,
established best practices for “designing for colorblindness”
are not necessarily transferable to password hash visualiza-
tion. Further research may bring more clarity in regards to
what measures could be helpful.

Figure 6: As the base palette for its images, MosaicVisual-
Hash uses a 2D slice of the HSL color space [16] where the
saturation value ismaximized, i.e. no grays appear, as shown
here. Further, the lightness value is clamped to a range ex-
cluding the darkest 20% and the lightest 10% of the color
space, in order to avoid HSL color specifications where the
hue would have too low an influence on the final color. The
areawithin the dashed lines constitutes the color space from
which the algorithm can select its colors.

MosaicVisualHash has been implemented in the JavaScript
programming language and is available to the public as open
source software2.

4 DESIGN RECOMMENDATIONS
A successful implementation of MosaicVisualHash requires
some additional considerations beyond the process of the
visualization algorithm itself. In this section, we will de-
scribe one existing practical use case for real-time password
hash visualization and explain several measures we took to
strengthen practical security and privacy.
This use case employs MosaicVisualHash as a tool for

user-governed password validation. The user enters a pass-
word into an interactive password text field via a keyboard,
one character at a time. The password field hides the charac-
ters behind asterisks or another masking character, so the
password is invisible to an over-the-shoulder attacker and
screen capturing methods. After the user has finished typing
the password, they can look at the visualization. If the visu-
alization looks the same as it did for previous times when
the user entered the same password, they can be reasonably
certain that the password matches (i.e. the password itself
was correctly recalled and the transfer from user memory
into computer memory via the keyboard did not introduce
any errors). This way, the user can verify the presence of the
2GitHub: https://github.com/jfietkau/Mosaic-Visual-Hash

https://github.com/jfietkau/Mosaic-Visual-Hash

MuC’19 Workshops, Hamburg, Deutschland Fietkau et al.

correct password without any software-based validation of
the specific password being used.
Ideally, the user would be able to glance at the visual-

ization immediately after they have finished typing their
password. However, as system designers we do not know
the length of the password in advance. From this point we
have two options: we could delay the visualization until the
user triggers it via some deliberate action (e.g. pressing the
“Enter” key or clicking a button), or we could display the
visualization continuously, as the password is being typed.

Delaying the visualization until a separate user action is
performed has the advantage that a visualization is only visi-
ble when it is needed, after the complete password is present.
The main disadvantage is that it introduces friction into the
user experience: Ideally, we expect that the user would want
to verify the password right after they have typed it, with-
out having to trigger the action separately. Notably, if the
visualization differs from what the user expects, they would
presumably want to be able to retype their password without
unfocusing and then refocusing the password input field.

If we perform the visualization after every keystroke per-
formed in the password field, this would allow the user to
verify the visualization immediately. The computation time
for a MosaicVisualHash image is nearly instantaneous on
modern computers, thus it is completely feasible to visualize
the hash continually, as the password is being typed. The
advantage compared to variant one is a removal of a delay
in the user’s workflow and reduction of friction in the user
experience. However, this approach introduces a big security
problem: If the password hash is being instantly visualized
as the password is typed, character by character, an attacker
would be able to use a video recording of the visualization
(whether taken over the shoulder or using screen recording
software) to easily reconstruct the password. Passwords gain
their security through the combinatorial explosion of possi-
bilities for the characters in a password of sufficient length,
but if only one character is added at a time, an attacker can
easily test all the different characters on a typical keyboard
until the visualization matches the previously captured one.

The usability and user experience of our approach is vitally
important to us. That is why we developed several ideas to
mitigate the security issue introduced by variant two in order
to ensure a smooth user experience.

Minimum password length before visualization: As
time goes on, the recommended minimum length for a pass-
word has increased. As of this article, a sensible minimum
password requirement might be 12 characters, but this num-
ber might well increase over the years and decades. If we as-
sume that any password shorter than theminimum password
length is trivial, then it makes sense to delay the visualization
until the user has entered enough characters to satisfy the

Figure 7: Four MosaicVisualHash output images for the
same input at default jitter settings. Note the minor devia-
tions in the colors and line positions in the image, intended
to not be noticed by a human viewer comparing a current
image to their recall of a previous one.

minimum password length. This would significantly reduce
the feasibility of the video-based attacks mentioned above.

Artificial visualization delay: The algorithm is com-
putationally simple enough to perform its task practically
instantly. However, it could be wise to introduce an artificial
delay into the visualization process. From previous research
and practical experience, we know that the average time be-
tween user keystrokes is much shorter than the time it takes
the user to shift their mental focus from the keyboard to the
screen. If we delay the visualization by a short amount of
time, such as a few hundred milliseconds, it would likely still
be fast enough for a smooth user experience while also not
exposing intermediate visualizations to video-based attacks.

Visual jitter: The images generated by the algorithm are
to be compared by humans, so they do not need to have pixel-
perfect accuracy to be perceived as “the same image”. On the
contrary, it makes sense to introduce minor deviations to the
colors and the position of the image components in order
to make it more difficult for an attacker to gain information
about the password based on a screenshot of the hash vi-
sualization. We credit this idea to Paul Sawaya, who first
documented it for his visual hashing work at Mozilla [24].
In MosaicVisualHash, there is a jitter setting with which the
visual jitter parameters of the generated images are scaled.
See figure 7 for an example.

MuC’19 Workshops, Hamburg, Deutschland

5 SUMMARY
In this article we have presented a new hash visualization al-
gorithm, which was also implemented in a demo application.
Such algorithms open up the possibility to visualize pass-
word hashes in real time while the user enters a password.
Thus the user is supported in recognizing and correcting er-
rors within short timeframes. The proven human strength in
processing structured images can be used by this application.

This technique is not strictly limited to the use case of non-
networked password validation outlined above. For example,
it can also be used in addition to standard network-based
authentication procedures in order to allow the user a self-
governed password check before they submit their data.
This article provides a detailed description of the new

algorithm and simultaneously embeds it in a real use case3.
It describes measures that have been taken to best support
usable hash visualization for humans and at the same time
protect against various attacks on the underlying system.
From the point of view of security, it should be of in-

terest in future work whether the diversity of the images
produced by the algorithm is sufficient. This would be partic-
ularly important in order to minimize MosaicVisualHash’s
susceptibility to visual collisions (cases where distinct in-
puts produce visually indistinguishable images). Similarly,
it would be worth evaluating whether the algorithm param-
eters (number of curves and number of colors) should be
adjusted to optimize the usability and the security of the pro-
cess in regards to image perception and recall. In addition,
an empirical study on the general usability or user experi-
ence of the generated images could also be conducted to
determine to what extent they appeal to the user and thus
create a positive user experience compared to other HVAs
and password visualization/validation methods.
In summary, the developed MosaicVisualHash supports

the user in secure authentication by visualizing their pass-
word hash in real time and simultaneously strengthening
the security of a system by minimizing input errors due to
the exploitation of human strength in image processing.

ACKNOWLEDGMENTS
We thank Prof. Dr. Michael Koch for constructive feedback
on an early version of this article, and Mohamed Khamis for
a thought-provoking discussion of password validation at
CHI 2019 as well as encouraging us to pursue the publication
of our ideas.

3MosaicVisualHash has been used for password hash visualization in an
open-source password generator that is available to the public in a non-
academic setting and has a small number of users.

REFERENCES
[1] Martin Ankerl. 2009. How to Generate Random Colors Programmati-

cally. https://martin.ankerl.com/2009/12/09/how-to-create-random-
colors-programmatically/

[2] Andrej Bauer. 1998. Gallery of random art. http://andrej.com/art/
Original website defunct at the time of printing, now located at http:
//www.random-art.org/.

[3] Robert M. Boynton and D. E. Boss. 1971. The effect of background
luminance and contrast upon visual search performance. Illuminating
Engineering 66, 4 (1971), 173.

[4] Stuart K. Card, Thomas P. Moran, and Allen Newell. 1986. The model
human processor: An engineeringmodel of human performance. Hand-
book of perception and human performance 2, 45-1 (1986).

[5] R. Chatterjee, A. Athayle, D. Akhawe, A. Juels, and T. Ristenpart.
2016. pASSWORD tYPOS and How to Correct Them Securely. In
2016 IEEE Symposium on Security and Privacy (SP). 799–818. https:
//doi.org/10.1109/SP.2016.53

[6] Tyler Cipriani. 2017. Ssh Key Fingerprints, Identicons, and ASCII
art. https://tylercipriani.com/blog/2017/09/26/ssh-key-fingerprints-
identicons-and-ascii-art/

[7] Terrence Cole. 2011. Vash. http://www.thevash.com/ Website defunct
at the time of printing, archive copy available at https://web.archive.
org/web/20120428001217/http://thevash.com/.

[8] Chris Dary. 2009. HalfMask. http://lab.arc90.com/
2009/07/08/halfmask-an-experiment-in-password-masking/ Web-
site defunct at the time of printing, archive copy available
at https://web.archive.org/web/20120205091026/http://lab.arc90.com/
2009/07/08/halfmask-an-experiment-in-password-masking/.

[9] Chris Dary. 2009. HashMask. http://lab.arc90.com/2009/07/09/
hashmask-another-more-secure-experiment-in-password-masking/
Website defunct at the time of printing, archive copy avail-
able at https://web.archive.org/web/20120226055300/http:
//lab.arc90.com/2009/07/09/hashmask-another-more-secure-
experiment-in-password-masking/.

[10] Colin Davis. 2011. Robohash. https://robohash.org/
[11] Rachna Dhamija. 2000. Hash Visualization in User Authentication. In

CHI ’00 Extended Abstracts on Human Factors in Computing Systems
(CHI EA ’00). ACM, New York, NY, USA, 279–280. https://doi.org/10.
1145/633292.633455

[12] Nils Gruschka and Luigi Lo Iacono. 2010. Password Visualization
beyond Password Masking. In Proceedings of the Eighth International
Network Conference (INC 2010), Udo Bleimann, Paul S. Dowland, Steven
Furnell, and Oliver Schneider (Eds.). University of Plymouth School
Of Computing, Communications And Electronics, 179–188.

[13] Jack Holmes. 2014. Remove password masking. http://
passwordmasking.com/

[14] Luke Jefferson and Richard Harvey. 2006. Accommodating Color
Blind Computer Users. In Proceedings of the 8th International ACM
SIGACCESS Conference on Computers and Accessibility (Assets ’06).
ACM, New York, NY, USA, 40–47. https://doi.org/10.1145/1168987.
1168996

[15] Mohamed Khamis, Tobias Seitz, Leonhard Mertl, Alice Nguyen, Mario
Schneller, and Zhe Li. 2019. Passquerade: Improving Error Correction
of Text Passwords on Mobile Devices by Using Graphic Filters for
PasswordMasking. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems (CHI ’19). ACM, New York, NY, USA,
Article 686, 8 pages. https://doi.org/10.1145/3290605.3300916

[16] Haim Levkowitz and Gabor T. Herman. 1993. GLHS: A Generalized
Lightness, Hue, and Saturation Color Model. CVGIP: Graph. Models
Image Process. 55, 4 (July 1993), 271–285. https://doi.org/10.1006/cgip.
1993.1019

https://martin.ankerl.com/2009/12/09/how-to-create-random-colors-programmatically/
https://martin.ankerl.com/2009/12/09/how-to-create-random-colors-programmatically/
http://andrej.com/art/
http://www.random-art.org/
http://www.random-art.org/
https://doi.org/10.1109/SP.2016.53
https://doi.org/10.1109/SP.2016.53
https://tylercipriani.com/blog/2017/09/26/ssh-key-fingerprints-identicons-and-ascii-art/
https://tylercipriani.com/blog/2017/09/26/ssh-key-fingerprints-identicons-and-ascii-art/
http://www.thevash.com/
https://web.archive.org/web/20120428001217/http://thevash.com/
https://web.archive.org/web/20120428001217/http://thevash.com/
http://lab.arc90.com/2009/07/08/halfmask-an-experiment-in-password-masking/
http://lab.arc90.com/2009/07/08/halfmask-an-experiment-in-password-masking/
https://web.archive.org/web/20120205091026/http://lab.arc90.com/2009/07/08/halfmask-an-experiment-in-password-masking/
https://web.archive.org/web/20120205091026/http://lab.arc90.com/2009/07/08/halfmask-an-experiment-in-password-masking/
http://lab.arc90.com/2009/07/09/hashmask-another-more-secure-experiment-in-password-masking/
http://lab.arc90.com/2009/07/09/hashmask-another-more-secure-experiment-in-password-masking/
https://web.archive.org/web/20120226055300/http://lab.arc90.com/2009/07/09/hashmask-another-more-secure-experiment-in-password-masking/
https://web.archive.org/web/20120226055300/http://lab.arc90.com/2009/07/09/hashmask-another-more-secure-experiment-in-password-masking/
https://web.archive.org/web/20120226055300/http://lab.arc90.com/2009/07/09/hashmask-another-more-secure-experiment-in-password-masking/
https://robohash.org/
https://doi.org/10.1145/633292.633455
https://doi.org/10.1145/633292.633455
http://passwordmasking.com/
http://passwordmasking.com/
https://doi.org/10.1145/1168987.1168996
https://doi.org/10.1145/1168987.1168996
https://doi.org/10.1145/3290605.3300916
https://doi.org/10.1006/cgip.1993.1019
https://doi.org/10.1006/cgip.1993.1019

MuC’19 Workshops, Hamburg, Deutschland Fietkau et al.

[17] Dirk Loss, Tobias Limmer, and Alexander von Gernler. 2009. The
drunken bishop: An analysis of the OpenSSH fingerprint visualization
algorithm. (2009). http://dirk-loss.de/sshvis/drunken_bishop.pdf

[18] George A. Miller. 1956. The magical number seven, plus or minus two:
some limits on our capacity for processing information. Psychological
Review 63, 2 (1956), 81–97. https://doi.org/10.1037/h0043158

[19] Jakob Nielsen. 2009. Stop Password Masking. https://www.nngroup.
com/articles/stop-password-masking/

[20] Don Park. 2007. Visual Security: 9-block IP Identifica-
tion. https://web.archive.org/web/20080703155519/http:
//www.docuverse.com/blog/donpark/2007/01/18/visual-security-9-
block-ip-identification

[21] Adrian Perrig and Dawn Song. 1999. Hash visualization: A new
technique to improve real-world security. International Workshop
on Cryptographic Techniques and E-Commerce (1999), 131–138. https:
//users.ece.cmu.edu/~adrian/projects/validation/validation.pdf

[22] Richard E. Reynolds, Raymond M. White, and Robert L. Hilgendorf.
1972. Detection and recognition of colored signal lights. Human Factors
14, 3 (1972), 227–236.

[23] Sébastien Sauvage. 2011. VizHash GD - a visual hash. https://
sebsauvage.net/wiki/doku.php?id=php:vizhash_gd

[24] Paul Sawaya. 2011. Visual Hashing. https://wiki.mozilla.org/Identity/
Watchdog/Visual_Hashing

[25] Bruce Schneier. 2009. The Pros and Cons of Password Masking. https:
//www.schneier.com/blog/archives/2009/07/the_pros_and_co.html

[26] Joshua Tan, Lujo Bauer, Joseph Bonneau, Lorrie Faith Cranor, Jeremy
Thomas, and Blase Ur. 2017. Can Unicorns Help Users Compare Crypto
Key Fingerprints?. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems (CHI ’17). ACM, New York, NY, USA,
3787–3798. https://doi.org/10.1145/3025453.3025733

[27] Mattt Thompson. 2009. Chroma-Hash. https://github.com/mattt/
Chroma-Hash/

[28] L. G. Williams. 1966. The effect of target specification on objects
fixated during visual search. Perception & Psychophysics 1, 5 (1966),
315–318.

[29] Bang Wong. 2011. Points of view: Color blindness. Nature Methods 8,
441 (May 2011). https://doi.org/10.1038/nmeth.1618

[30] Luke Wroblewski. 2012. Mobile Design Details: Hide/Show Passwords.
https://www.lukew.com/ff/entry.asp?1653

http://dirk-loss.de/sshvis/drunken_bishop.pdf
https://doi.org/10.1037/h0043158
https://www.nngroup.com/articles/stop-password-masking/
https://www.nngroup.com/articles/stop-password-masking/
https://web.archive.org/web/20080703155519/http://www.docuverse.com/blog/donpark/2007/01/18/visual-security-9-block-ip-identification
https://web.archive.org/web/20080703155519/http://www.docuverse.com/blog/donpark/2007/01/18/visual-security-9-block-ip-identification
https://web.archive.org/web/20080703155519/http://www.docuverse.com/blog/donpark/2007/01/18/visual-security-9-block-ip-identification
https://users.ece.cmu.edu/~adrian/projects/validation/validation.pdf
https://users.ece.cmu.edu/~adrian/projects/validation/validation.pdf
https://sebsauvage.net/wiki/doku.php?id=php:vizhash_gd
https://sebsauvage.net/wiki/doku.php?id=php:vizhash_gd
https://wiki.mozilla.org/Identity/Watchdog/Visual_Hashing
https://wiki.mozilla.org/Identity/Watchdog/Visual_Hashing
https://www.schneier.com/blog/archives/2009/07/the_pros_and_co.html
https://www.schneier.com/blog/archives/2009/07/the_pros_and_co.html
https://doi.org/10.1145/3025453.3025733
https://github.com/mattt/Chroma-Hash/
https://github.com/mattt/Chroma-Hash/
https://doi.org/10.1038/nmeth.1618
https://www.lukew.com/ff/entry.asp?1653

	Abstract
	1 Introduction
	2 Related Work
	3 Algorithm
	4 Design Recommendations
	5 Summary
	Acknowledgments
	References

