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Abstract: Body tracking sensors (i.e., depth cameras) such
as Microsoft Kinect have been utilized in ambient display
research for more than a decade. They facilitate a deeper
understanding of phenomena occurring throughout inter-
actions, aid the investigation of ambient displays within a
broader context, and effectively complement existing quali-
tative methods such as on-site observations. Although these
sensors have made significant contributions to research,
there are still challenges with regard to data collection and
analysis, particularly in light of recent advances in artifi-
cial intelligence. Further research is needed into how these
sensors can contribute to a better understanding of how
ambient displays are used in practice long term and how
they can help to develop this understanding. In this arti-
cle, we expand on the potentials and limitations of body
tracking sensors that we experienced in our own in-the-
wild research. To this end, we present insights from a small
fleet of long-term, real-world installations of ambient dis-
plays we manage, which incorporate multiple body tracking
sensors. The present article is concluded with a discussion
of future directions for the field. In particular, the present
study explores the potential contributions of body tracking
sensors to recent methodological developments in the field
of Human-Computer Interaction.
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1 Introduction

In recent years, there have been unprecedented changes
in the field of Human-Computer Interaction (HCI), espe-
cially relating to data-driven applications in the wake of
the ongoing hype surrounding applied artificial intelligence
(AD) and its countless methodological developments, par-
ticularly in the field of machine learning (ML). Additional
advancements include Extended Reality (XR) technology,
namely Virtual Reality (VR) and Augmented Reality (AR),
Internet of Things (IoT), blockchain, big data, pervasive or
ubiquitous technology, and more.!~® These technological
advancements are fundamentally changing the way people
interact with each other, raising the question of how we
can understand their wider societal implications.* Although
traditional interaction issues remain relevant and warrant
further research, many contemporary issues in HCL, such as
ethics, privacy, and security, are in fact related to this shift
to data intensity.? As Weiser® envisioned in the early 1990s,
the modern world is now characterized by rapidly advanc-
ing ubiquitous technology,® with which humans interact
in their natural, built, and synthetic environments. Public
and semi-public displays, or ambient displays as we refer
to them, are part of this development. A wide variety of
applications exist today, including examples, for instance,
to visualize the production and consumption of electricity
stemming from photovoltaic panels in private households,’
to highlight work progress in agile software development
teams,? to ease access to public transport systems,” and to
combine large-display installations with AR technology to
address perspective distortion.°

One important area of HCI that can help us to under-
stand how technological artefacts are used and adopted
is behavior tracking. On a technological level, the term
behavior tracking more broadly refers to the ability to pro-
vide researchers with in-depth insights into, for example,
how people move around or collaborate. While the over-
all number of approaches to behavior tracking observed
in HCI is increasing,* the same is true for the domain of
ambient display research. The first studies investigating
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user behavior surrounding display installations were con-
ducted during the 2010s. They focused on issues such as
scrutinizing pedestrian traffic in public spaces [e.g., 11, 12]
and on students’ walking behavior around university can-
teen installations [e.g., 13], to name but a few. The main tech-
nical tools for this purpose were, and are to this day, body
tracking sensors (i.e., depth cameras) from various vendors
(e.g., Microsoft Kinect and Stereolabs ZED). These sensors
utilize different approaches, such as time-of-flight, stereo
vision, or structured light, to this end. Due to their cost
efficiency in comparison to manual (human) observation,
their ability to be readily adapted to other deployments, and
the fact that they are easily integrated with other method-
ologies,'>? body tracking sensors have become integral to
this category of research in recent years. Notably, body
tracking sensors have been used in the natural and situated
environments of ambient display installations. Research
in real-world places, or in the wild as we refer to follow-
ing Williamson and Williamson,"® embodies an important
paradigm shift in HCI and experiences increasing attention
in the community.'* However, research in the wild is a messy
and complex endeavor.'31516

Some of the issues we touch on in this article are
reflected in the seven grand challenges for the HCI com-
munity. These include, for instance that current sensor
systems, big data analyses, and ML methods in general still
need to fully adjust to human needs with respect tosupport-
ing and enhancing human abilities.*'” Further limitations
include a scale shortage in current research endeavors, a
lack of long-term insights from real-world environments,
and an insufficient theoretical background.®*-%° Equally,
appropriate evaluation and validation techniques remain
an open issue.*™ Applied to ambient display research, we
still have limited knowledge ofhow to approach the method-
ological aspects of longitudinal in-the-wild research, partic-
ularly in light of recent advances in body tracking sensor
technology and Alin general. Admittedly, data-driven appli-
cations and ML have made significant progress in the field of
HCIinrecent years. However, we need to establish a founda-
tion with regard to the application of body tracking sensors
in longitudinal research spanning multiple years. We argue
that further fundamental work is necessary to enable the
ready application of ML methods in our domain. Important
overarching questions surround aspects such as automation
and the combination of quantitative and qualitative meth-
ods into a solid theoretical framework, what type of data to
collect, as well as which supervised and unsupervised ML
approaches are fruitful candidates. From our perspective
as HCI scientists, we would like to raise awareness of the
challenges we have experienced in our research and the
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opportunities we see for our community going forward. To

this end, we concentrate on three central research questions

in the present article:

1. How can we make effective use of modern body tracking
sensors with their specific feature sets in mind?

2. Inwhat ways do specific usage patterns manifest them-

selves in the collected data?

3. What are useful algorithmic means to analyze the data?

By doing this, we aim to highlight the complexities of in-
the-wild research at different phases using body tracking
sensors. While some issues concern aspects prior to or
throughout data collection (e.g., hardware limitations), oth-
ers draw attention to the foundations of the analysis pro-
cess (e.g., automatically distill usage patterns). We do not
claim that the three outlined questions elaborated on are
exhaustive in any way, nor that they reflect the challenges
other researchers might face. However, they summarize key
issues that we came across in our own research.

The article is organized as follows: In Section 2, related
literature is introduced. The different body tracking sen-
sors employed in our research are presented in Section 3,
while Section 4 elaborates on the various experiments and
field research that we have conducted. In Section 5, we
discuss the experimental and methodological outcomes in
more detail and present guidance for future research, and
Section 6 concludes this article.

2 Related work

This section highlights recent developments in the use of
body tracking sensors in ambient display research, conclud-
ing with a reflection on the status quo.

2.1 State of the art

The field of computer-supported cooperative work (CSCW)
has a long history rooted in the analysis and design of tech-
nology for collaboration, which would be much too expan-
sive to summarize here. For a literature overview of how
collaboration using ambient displays can be experimentally
evaluated in general (not focusing on body tracking sen-
sors), see Mateescu et al.?! The work to integrate the current
wave of Al technologies into ambient display evaluation
studies is still ongoing, but we have begun to see examples
such as Atta et al.?

For this article, we will focus our attention on the study
of ambient display deployments using body tracking tech-
nology. In the following, selected examples for usage of body
tracking sensors in real-world environments are presented.



DE GRUYTER

Some of these examples represent short-term efforts, while
others have used body tracking sensors in their work for
up to a year. The most seminal work in this context is the
study by Williamson and Williamson."" The authors ana-
lyzed pedestrian traffic in front of a public display installa-
tion by using a camera positioned three stories above the
walkway on which the display was located. The principal
motivation was to understand how such technology changes
public spaces, how it is being used in authentic contexts,
and how different interaction styles actually work. A custom
computer vision based tool incorporating a variety of differ-
ent diagnostic and visualization techniques was used to ana-
lyze the data. While data of over 900 pedestrians were col-
lected, the study was very short-termed, as the data collected
amounted to only about 4 h of video material. However, the
work of Williamson and Williamson™ paved the way for the
use of camera sensors to track people’s movement in front of
display installations, thereby inspiring subsequent research
in the following years. A few years later, Williamson and
Williamson®® revisited their approach, now concentrating
on the question of how experimenter interventions affect
the evaluation process. Specifically, the authors sought to
find out, how different types of experimenter presence (e.g.,
no visible presence of investigators in contrast to proac-
tively intervening during interaction) introduce what kind
of bias. The authors collected a total of 4 h of video data
for each of the three types of intervention investigated,
including more than 5,000 passers-by in total. A Microsoft
Kinect v2 camera was installed to capture data right in
front of the display, while another camera was placed 15 m
above and 15 m behind the display installation to collect
overhead video material. OpenNI libraries were used to
analyze the data from the Kinect sensor and the authors uti-
lized their own custom tool mentioned ahove to investigate
pedestrian traffic. In addition, the authors collected data
from manual observations and interaction logs. Williamson
and Williamson®® found, for instance, that the presence of
an observer significantly reduced interactions with the dis-
play installation. Fundamentally, they encourage the sys-
tematic control of experimenter roles in evaluations and
the use of high-quality measurements such as pedestrian
traffic data to quantify the observer effect. In the same year,
Elhart et al.?® introduced and evaluated a similar custom
tool for tracking audience mobility. Their research motiva-
tion was similar to that of Williamson and Williamson,"
while emphasizing that only a few low-cost tools exist
to capture spatial and temporal behavior. In their setup,
the authors used a Microsoft Kinect device and utilized a
combination of open source computer vision and web visu-
alization techniques (among others OpenNI and OpencCV).
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The camera and display were installed in front of a uni-
versity canteen. The tool itself was evaluated using 14
videos, each 5minlong. Subsequently, the tool was used
over 52 days to collect and analyze data from approximately
41,000 passers-by. Their findings include the fact that, for
instance, the highest number of passers-by occurred during
lunchtime and that most people spent no more than 4s
in front of the display. Elhart et al.® believe that the main
strength of their sensor-based approach lies in providing
additional information on aspects such as content transi-
tions and touch interactions. Another example is the study
by Mikela et al.,'> which, to the best of our knowledge, is the
first long-term investigation of a real-world display setup
using body tracking sensors. The authors’ motivation con-
cerned the overall process of data collection and analysis
of depth-based camera data, resulting in a semi-automatic
process to study public displays. Their research is based on
data collected over the course of a year using a Microsoft
Kinect camera in a university setting. This data includes
information on over 100,000 passers-by. The introduced
process consists of four principal phases: data collection,
preparation, feature extraction, and analysis. While the first
two phases are straightforward and can be automated to a
large extent, the latter two phases require the most manual
work, such as determining research questions. The authors
ran analyses using Microsoft Excel and SPSS. In their setting,
Mikeli et al.”* found that, for example, over 90 % of users
were passive users (i.e., people who were not actively engag-
ing with the installation). They also revealed that users
entering the sensors’s field of view from the front were
significantly more likely to become direct users (i.e., people
who interacted with the display). Overall, their study made
notable contributions on a methodological level.

2.2 Research gaps and implications

We revisited the aforementioned studies and conducted a
comprehensive literature review. The aim was to find new
research on audience hehavior in the wild that uses body
tracking sensors in ambient display studies. While we ini-
tially set out with a forward reference search and an evalua-
tion of resulting papers, we subsequently also focused more
broadly on relevant literature repositories such as ACM
Digital Library and IEEE Xplore. This process revealed that,
to date, the studies by Elhart et al.”® and Mékelé et al.'? are
the only ones to have attempted longer-term research into
this topic. While all of the studies mentioned here greatly
informed our research, we find this fact surprising for two
meaningful reasons.

First, given the progress made in recent years, more
accurate and feature-rich cameras are available today. As



4 = | Schwarzer et al.: Exploring body tracking sensors in longitudinal ambient display studies

these newer cameras can produce richer insights (e.g.,
detection of a higher number of people simultaneously, a
wider field of view, and generally better detection accuracy),
they could also assist greatly in improving our understand-
ing of a display’s surrounding environment. Alongside qual-
itative methods such as interviews and observations, these
sensors could help us to investigate group constellations,
collaborative exchanges, and effects occurring during inter-
action (e.g., the honeypot effect) in more detail. By doing
so, modern body tracking sensors could help to shed light
on the wider implications of ambient displays in real-world
settings. We could better reflect on when displays installa-
tions are being used and how, as well as how they fit into
the existing toolset architecture of every modern company.
To us, it seems that research in this area has stalled - i.e.,
transitioning from academic feasibility studies to real-world
endeavors that utilize the full range of qualitative and quan-
titative methods. We believe that foundational research is
necessary to pioneer methodological approaches in order to
develop new, disruptive theories that can advance our field
at its core. Such endeavors certainly require a great deal of
time and resources, but we believe they are worthwhile. In
other words, we think that our field requires more holistic
and long-term research not only expanding on methodolog-
ical questions, but also touching on the real-world implica-
tions of display deployments.

Second, despite the recent advancements in Al, it seems
that our field is not capitalizing on them. In addition to
the more traditional approaches, such as clustering and
tree algorithms, many variants of neural networks are now
widely available. Some of these are specifically designed
to work with body tracking data, such as Graph Convolu-
tional Network (GCN) models, and enable new approaches
to analyzing large amounts of data. Instead, it seems that a
large part of the HCI community’s focus has shifted towards
working with technologies such as AR and VR. Yet, we still do
not know how ambient displays are utilized in practice, nor
how we can even develop this understanding. We encour-
age researchers to experiment with AI's capabilities to gain
a better understanding of its potential contributions. For
example, supervised learning approaches could be explored
to identify ways to automate certain aspects of qualitative
work such as coding procedures. Others may explore ways
to leverage GCN s to identify patterns of interaction in body
tracking data. Overall, we believe that there is significant
potential that remains unused, given the advances in Al and
the need to handle large volumes of data produced by body
tracking sensors.
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3 Body tracking sensors

Building on the research gaps and implications mentioned
above, we now turn our attention to the deployment of
body tracking sensors in our research. First, we highlight
how these sensors have been used and for what purpose.
Second, we then provide a brief overview in terms of how
these sensors work and operate. Finally, we present one
custom-built tool that we use in our research for visualizing
and analyzing the corresponding body tracking data.

3.1 Deployment settings

All of our past and current deployments have focused pri-
marily on investigating long-term usage. The methodolog-
ical toolset available at the different points in time has
affected these individual investigations. For example, when
we began our first multi-year deployment in 2014, we ini-
tially relied on interviews, observations and touch inter-
action logs. Building on this, we developed a fundamental
theory about how the display installation had been used by
agile software development teams back then.”* Qur moti-
vation was driven by a discrepancy between the ideas pro-
posed in the literature so far — such as the notion that ambi-
ent displays encourage communication and collaboration
— and how these promises actually manifest in practice over
time, if at all.

In 2016, we conducted our first experiments using a
Microsoft Kinect v2 sensor and began intensifying our work
with body tracking sensors. We quickly realized the oppor-
tunities that this new technology presented, both in amend-
ing existing methods and in contributing rich new nuances
to the overall research. It suddenly became easy to expand
on interactions in an installation’s vicinity, thereby reduc-
ing the need for field observations. While these sensors
undoubtedly have their limitations, such as a limited field
of view, they nonetheless enable us to gain an initial under-
standing of a display’s surroundings. The results of our ini-
tial experiments were published in an article in 2022.2 Over
the coming years, we have set up different display deploy-
ments in both Hamburg and Munich. Our research matured
in terms of, for example, specific research questions and
the experience of conducting research in the wild. Overall,
we have run deployment experiments mainly in two differ-
ent semi-public contexts: a software development company
and a university, both in Germany. For both contexts, we
placed one or more interactive ambient displays into a room
which is not open to the public at large, but which many



DE GRUYTER

J. Schwarzer et al.: Exploring body tracking sensors in longitudinal ambient display studies == 5

Figure 1: Two photos of representative ambient display deployments with body tracking sensors. Left: software company deployment, using a
Microsoft Kinect v2 sensor. Right: university deployment, using a Stereolabs ZED 2 sensor.

people with access (company employees/university stu-
dents) would pass by on foot every day. In fact, the amount
of expected foot traffic was the main criterion for our place-
ment decisions. For example, Figure 1 on the left shows one
of our two currently deployed installations in the aforemen-
tioned company’s New Work café, which is visited by many
people during the day.

Each deployment consisted of a screen (rarely also
more than one) with a body tracking sensor attached to the
top of its frame. In this way, experminents revealed that the
sensors could perform the body tracking task of the area
right in front of them the best. Again, our goal is to capture
and understand the usage of ambient displays “in passing”
(as opposed to prolonged, focused use), and all facets of the
deployment — not only the display placement, but also the
interactive software running on the device — were oriented
towards this goal. The detailed purpose and contents of the
ambient displays are beyond the scope of this article, but
further information can be found in Schwarzer et al.® and
Koch et al.,”® respectively.

3.2 Technical approach

Our attention now turns to the question of how these sen-
sors operate. Optical body tracking sensors are the main
instrument used for detailed analysis of behavior, focusing
on anonymized body tracking models. The optical sensors
used in our research (Microsoft Kinect, Stereolabs ZED 2)
work roughly as follows: First, an image of the environment
is digitized by the camera sensors. However, the image mate-
rialis not recorded immediately, but instead a body tracking
algorithm is applied in real time, which marks individuals
with their body postures in the image. While the Kinect v2
sensor uses a random forest algorithm for this purpose, the
ZED 2 relies on a neural network.

The manufacturers of the two commercial sensors we
use do not disclose the exact details of their respective
recognition methods. However, we can deduce the basic pro-
cess from studies [e.g., 26]. Using Kinect v2 as an example,
we would like to describe the functionality in more detail
below. It can be assumed that the random forest algorithm
integrated in Kinect v2 was trained with several hundred
thousand images to ensure its functionality. The process-
ing chain of the camera can be divided into three parts,
visualized in Figure 2. First, the Kinect sensor collects depth
images using infrared, in which each pixel contains depth
information accurate to within a few centimeters. The
advantages of depth images include the ability to cope
with poor lighting conditions, being invariant to color, tex-
ture, and body shape, and the ability to synthesize realistic
images of people. Second, classification algorithms are used
to determine probabilistic pixel-based body regions. Some
of these parts are defined in such a way that they directly
locate specific body points, while others fill in the gaps or
can be used in combination to predict other joints. Finally,
the specific positions of body points are specified in three-
dimensional coordinates. The previously determined pixel-
based information regarding the body regions must now be
integrated across all pixels in order to make reliable sug-
gestions for the positions of the body points. For the Kinect
v2, this procedure results in a total of 26 individual body
points per person. The body points determined analytically
in this way are recorded with their positions in space. As
a result, the sensor technology provides relatively accurate
data on the position, posture, line of sight, etc. of the persons
in the spatial area in front of the screens. Although it is
not possible to recognize specific people on the basis of
these abstract body models, conclusions can be drawn with
regard to recurring individual or group behavior.
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Figure 2: The body tracking algorithm used by the Microsoft Kinect v2 sensor, showing how a depth image gets processed into body regions and

finally key points. Own visualization, inspired by Shotton et al.?®

The Stereolabs ZED 2 conceptually fulfills the same
task, but there are nuanced differences in the technical
approaches. It uses parallax depth detection based on two
separate camera sensors instead of the Kinect v2’s infrared
technology. At a slightly higher off-the-shelf purchase price,
it can support increased resolutions and frame rates as
well as detect a maximum of 10 humans up to 20 m away
compared to the Kinect v2’s maximum of six humans up to
5m away. The Kinect v2 has a fixed 25-point body model,
while the ZED 2 supports several different body models with
up to 38 key points. However, unlike the Kinect’s, the ZED 2
software does not perform engagement estimations, which

must be implemented by the data consumer if they are
needed.

3.3 PoseViz

One major obstacle was the lack of an established format
for storing and transmitting body tracking data. Existing
data formats were either vendor-specific (e.g., Microsoft
Kinect Studio recordings) or not suitable for stationary body
tracking setups where passers-by may enter and leave the
area of interest at any time (e.g., Biovision Hierarchy for-
mat). To be able to do non-trivial empirical work with body
tracking data, we first had to design a format suitable for
storing such data as well as transfering it in bulk or in real
time, and then develop software tools to read, write, and
visualize data in this format. With the goal in mind that
future researchers should have as easy a time as possible
to understand our recorded body tracking data if needed,
we decided on a textual format that uses line-based fields

to delineate frames (specific moments in time) within a
recording, persons within a frame, and key points (specific
limbs and joints) within each person. This makes our format
(dubbed PoseViz) fairly easy to parse algorithmically as well
as to read in any text editor. In the process of designing
the format, we implemented code to access our two sensor
models’ respective APIs and transform their body track-
ing data into our format to enable them to be stored and
reviewed.

This gave us the ability to work on a browser-based
playback software (see Figure 3) that also shares the name
PoseViz with the file format itself. PoseViz is capable of
reading one or more stored body tracking recordings, ren-
der them in a 3D visualization, and allow playback and

(>

Figure 3: A screenshot of the PoseViz software showing a person moving
inside an abstract 3D space with video-style playback controls at the
bottom. Visit https://poseviz.com/ to see this demonstration in motion.

0:23/0:40
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scrubbing just like in typical video players. It is possible to
look at interactions from different angles and to generally
get an impression of the quality of the sensor data. PoseViz
allows the user to toggle various display aspects including
position markers, gaze estimations, and walking trajecto-
ries. The playback speed and rendering perspective can be
adjusted, and PoseViz can display time-based annotations as
well as engagement data over time, if such data is embed-
ded in the recording. The planning and design process is
described in more detail in Fietkau.?’ An interactive demon-
stration of PoseViz is available for free testing online.!

Examining larger quantities of body tracking record-
ings for specific hypotheses requires additional bespoke
tooling that can analyze the aspects relevant to those
hypotheses. Our work examining two-dimensional walking
paths as clustered time series data,?® described further in
subsubsection 4.3.2, serves as a practical example of the
kind of quantitative insight that can be gained from body
tracking data facilitated by tools like PoseViz.

4 Experiments and field research

We now draw attention to insights from experiments and
field research we have carried out in the aforementioned
settings. As outlined in the introduction, we focus on three
central questions to this end.

4.1 How can we make effective use of
modern body tracking sensors with their
specific feature sets in mind?

To this day, we are using two types of body tracking sensors
in our research: Microsoft Kinect v2 (released in 2014) and
Stereolabs ZED 2 (released in 2019) sensors. Each camera
has its own advantages and disadvantages. For instance,
the ZED 2 sensor can detect up to 10 people simultaneously,
whereas the Kinect v2 camera is limited to six people in
total. However, the Kinect v2 sensor provides a specific
feature which the ZED 2 sensor does not: To a greater
or lesser extent, it can tell us whether or not a person
is looking directly in its direction. Tests revealed that the
Kinect v2 cameras successfully determined the looking-at
gesture when mounted on top of each display (see Figure 1)
even when we were looking at the displays instead. This
aspect was fundamental to our research, as it enabled us
to detect when people interacted with the displays in a
passive way (e.g., by passing by without engaging with them

1 See: https://poseviz.com/.
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actively), as opposed to passing by inattentively. Overall,
we refer to this behavior as engagement in our research.
Before we started using body tracking sensors, our research
relied heavily on touch interaction logs. This meant that,
except from observations and interviews, we could not
expand on passive interactions in the displays’ surrounding
areas. In the following, we shed light on how we replicated
this detection mechanism of engagement with the ZED 2
Sensor.

4.1.1 Parameters for engagement

We started by determining a list of body tracking features

that, in combination, could allow us to establish a correla-

tion with engagement.”” We settled on the following list:

— Distance between a person and a display.

— Movement speed of a person (slowly walking or stand-
ing people are more likely to be paying attention).

— Body orientation (people facing towards the display are
more likely to be paying attention to it).

— Gaze direction (same as before but measuring only the
head instead of the full body).

— Directinteraction (people reaching or pointing towards
the display are very likely to be paying attention to it).

Each of these five variables was measured, then clamped
and normalized to a scalar value in the range between 0 and
1. For the distance and speed values, the input range was
calibrated using practically sensible real-world values. For
the body orientation and gaze direction values, the angular
difference to the direction of the screen was calculated,
with any angle >90° being assigned the value 0. The direct
interaction value measured the time that people had their
arms raised and pointed at the screen, with the value of 1
reached after 15s. The engagement score for each person
at each point in time was then calculated as the average
of these five values. Accordingly, an engagement score of
0.8 indicates, for instance, that a person showed a higher
level of engagement, while a score of 0.2 underlines the
opposite.

4.1.2 Initial testing

We performed a pilot test to validate this method to calcu-
late the engagement score.” To that end, 27 different con-
stellations of individuals paying attention to the screen from
different distances, at different movement speeds, and using
different body and gaze angles were performed in front
of our experimental installation. The resulting recordings
were manually scored for their degree of attention and the
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results compared with our engagement score. Based on this,
we determined that there were still major issues with the
measurement extraction code (e.g., inaccuracies in the mea-
surement of directions), but that the correlation was good
enough to prove the general feasibility of the approach.

Next, we took a sample from the non-staged body track-
ing data gathered from our long-term deployments for the
sake of comparison. As expected, the real-world data was
generally noisier and contained more distractions and irrel-
evant movements compared to our staged scenarios. To
test the feasibility of large-scale asynchronous engagement
scoring of body tracking data, we scored some 40,000 indi-
vidual recordings. It was difficult to assess the validity of
the scoring since there was not much accessible ground
truth to compare it to, but the score distributions across
the two deployment sites appeared plausible regarding their
spatial circumstances (two screens in hallways predomi-
nantly used by passers-by, one with much more unaffiliated
foot traffic than the other) and a brief qualitative analysis
of randomly selected recordings revealed that the feature-
based engagement score appeared to be generally suitable
as an automated estimation for manually assigned engage-
ment values. In a categorized comparison of the two mea-
surements, we observed an average deviation of 15-20 %
[29, Table 2]. The main conclusion of this experiment was
that the engagement score could be a valuable instrument
in determining attention from body tracking data without
manual intervention.

4.1.3 Revised testing

To further refine the approach, we conducted a follow-up
experiment, reported on by Filippov et al.,** in which the
engagement score calculation was simplified to omit the
gaze direction, which proved difficult to estimate accurately,
and the presence of direct interaction, which unduly down-
ranked passive but interested observers. The engagement
score was thus calculated based on the body orientation, the
distance to the screen, and the movement speed. Further-
more, this second experimental approach made a stronger
effort to examine the body tracking recordings as time series
data that has dynamics which can be analyzed instead of
merely averaged out. By calculating the engagement score
for each timestamp in a recording and plotting it against
time, we can examine how a person’s engagement changes
throughout the recording. Detecting the local maximum
allows us to identify individuals who paid attention for only
a short period within a longer recording.

Similar to the initial test, we once again took a sam-
ple of real unsupervised body tracking data and manually
labeled it on our engagement scale. Using this data as a
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baseline, we were additionally able to derive a suitable
engagement score threshold to differentiate between non-
engaging passers-by and people who paid at least some
attention to the installation. Testing the classifier with a
different random sample from the data set, we arrived at
an accuracy of just over 90 %, a notable improvement com-
pared to the first iteration that further validates the feature-
based engagement scoring approach.

4.2 In what ways do specific usage patterns
manifest themselves in the collected
data?

Alongside questions concerning interaction patterns, times
of peak usage and information displayed at certain times,
there is also the question of what specific usage patterns
might occur and how they manifest in the collected data.
The literature describes different patterns that can typically
be observed in ambient display research such as the novelty
effect® and the honeypot effect.*? The novelty effect suggests
that new technology is used more frequently in the period
immediately following its deployment. The honeypot effect,
at its most basic, refers to situations in which one person
standing in front of a display installation attracts others to
join them. In our work, we placed a strong emphasis on the
honeypot effect because of the interesting collaboration con-
stellations that it involves by definition. Arguably, the range
of emerging collaboration patterns is vast. In the following,
however, we expand on the work we carried out to investi-
gate how the honeypot effect potentially manifests itself in
the data. The overarching goal is to be able to automatically
classify instances of the honeypot effect in the future.

4.21 Detecting the honeypot effect

To gain insight, we performed a study building on the earlier
work on engagement measurement’>*° described in sub-
section 4.1, now looking beyond interactions by individual
people and specifically examining constellations of multiple
people appearing in the deployment areas simultaneously,
in order to detect and classify instances of the honeypot
effect.

Our investigation of empirical methods for the detec-
tion of instances of the honeypot effect is described
by Bieschke,® in which the feature-based approach was
extended to multi-person patterns and used to auto-
matically filter for honeypot effect candidates in long-
term body tracking recordings. Once again, a collec-
tion of archetypical honeypot effect situations was artifi-
cially enacted and recorded in front of a real interactive
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installation as body tracking data. A manual examination of
their commonalities followed by the iterative development
of a feature-based classifier led to the conclusion that hon-
eypot constellations always feature multiple people arriving
at different times with overlapping presence windows (pre-
condition), with everyone involved looking in the direction
of the screen and approaching it for some amount of time.
Using these criteria, a sample of 9,000 recordings covering
one calendar month was classified into honeypot and non-
honeypot scenarios, with five honeypot candidates emerg-
ing. These were subsequently verified through individual
visual inspection and compared to a random sample of non-
matches, substantiating the claim that the feature-based
classifier can practically function as a honeypot constella-
tion detector.

4.2.2 Limitations of this approach

It is worth noting that this approach as well as possible ML
classifiers for honeypot constellations must contend with
the fact that body tracking recordings give us access to
people’s movements, but not their intentions. According to
the strict definition of the honeypot effect, the second person
must give attention to the installation because someone else
is already present. By analyzing body tracking data, we
can only ascertain that someone else was already present,
but we do not gain insight into people’s actual motivations,
which would require deeper qualitative analysis through
methods such as interviews or on-site observations.

4.3 What are useful algorithmic means to
analyze the data?

The focus now shifts to the analysis of the data itself.
Over the last decade, our general analytical approaches
have evolved and matured. We experimented with vari-
ous methods, which we outline below. This development
is also reflected to some extent within our community, as
can be seen when we compare two fundamental studies
that reflect on the current state of HCL.*3** While AI played
a rather minor role in their 2019 study, Stephanidis et al.*
make extensive references to it in the revised version from
2025.

4.3.1 Descriptive statistics

In 2017, we deployed a first Microsoft Kinect v2 setup and
collected roughly 100,000 records over 4.5 months. The first
challenge was to devise a way of analyzing this large amount
of data. We asked ourselves fundamental questions about
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how to approach this dataset, what to look for, the qual-
ity of the data, and others. Ultimately, inspired by related
research [e.g., 13], we opted for descriptive analyses and
published our results in an article.® These analyses con-
centrated on spatial and temporal audience behavior using
different visualizations and statistics to demonstrate our
findings. For example, we identified the directions from
which people approached the display installation. We also
indicated the areas within the camera’s field of view that
showed the highest level of engagement.

Arguably, the most important lesson learned during
this time was how to effectively collect, pre-process (e.g.,
filtering), and analyze depth-based camera data in a mean-
ingful way. We spent a great deal of time visually inspecting
the data and digging into its nuances. We also learned to
accept some limitations of the Kinect sensor. For example,
the camera sometimes accidentally lost tracking of people
when they briefly left the rather narrow field of view. Addi-
tionally, the possibility that the camera will lose tracking of
a person due to occlusion must be accounted for. Therefore,
while these sensors could be vital components of a research
design, their limitations must be taken into account.

In summary, this phase of our research was shaped by
the fact of having some preexisting knowledge (e.g., poten-
tial ways to analyze the data) and assumptions (e.g., prelim-
inary insights on usage patterns) of the data. This stemmed
primarily from our extensive immersion in the data prior
to conducting any analysis, as well as from our reading of
related literature.

4.3.2 Unsupervised learning approaches: clustering
algorithms

We gradually realized that we needed to shift away from
making assumptions about expected results. To a greater
or lesser extent, the goal was to replace at least some of
the labor-intensive steps discussed above and to increase
the level of automation during analysis. We focused on
finding ways for algorithms to explain what we see in the
data instead of us providing descriptive explanations. One
of the central pieces of the analysis involved investigat-
ing groups of walking trajectories, which in our case are
pathsin a two-dimensional coordinate landscape that depict
the movement of people from a bird’s-eye view. At the
most basic level, these trajectories show how people behave
in front of a display installation, such as passing by or
moving toward it. Walking trajectories therefore contribute
important insights regarding passive usage. Although we
found instances of similar walking trajectories in the data
manually, we could not determine whether these were
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representative at all or whether they were all potential
instances in the data set.

As a result, we reviewed the literature to find ways to
assist with this endeavor. Ultimately, we found that hier-
archical clustering combined with dynamic time warping
was an effective way to automatically group walking tra-
jectories. Other studies, as we point out in our correspond-
ing publication,?® have used both algorithms to examine,
for instance, flyways of birds®* or household electric load
curves.’ We implemented the algorithms and ran evalu-
ations on a subset of the data. Overall, we were able to
categorize different types of walking trajectories into cor-
responding groups.

Although we experienced this unsupervised ML
algorithm helpful, it has its limitations. One of the most
obvious limitations is the computational performance
of the algorithm: with datasets increasing in duration,
calculating the results can quickly become practically
untenable. Future work must address these performance
issues for the implementation to be applicable to large
data sets. Furthermore, because the nuances of the data
gathered in the wild are so rich, there is often no clear
distinction between two groups of walking trajectories,
even when suggested by the algorithm. Additional work is
necessary to fine-tune the clustering itself, as well as the
similarity metric used in dynamic time warping.

4.3.3 Supervised learning efforts

While we are still working on refining the above-detailed
clustering algorithm, we were also eager to find out if we
could automatically identify patterns in the data that we
already manually identified and were interested in. Hence,
we were looking into supervised ML approaches. In our
exploration of potentially suitable methodologies to detect
and classify engagement and other underlying effects and
sentiments in body tracking data, we did not want to limit
ourselves to human-discernible features. Our initial foray
into using supervised ML is documented by Lacher et al.*’
We posited that a ML model based on manually labeled
training data may be able to perform the classification of
individual body tracking frames into engaged and non-
engaged states. In this cursory study design, tagged training
data was generated by automatically labeling frames within
a short time range as engaged surrounding any direct inter-
action event in the system logs. The downside is that passive
engagement would not be accounted for by this approach,
but on the upside, it would yield large amounts of highly
reliable training data for active engagement. A model could
then be trained using this data and used as a classifier for
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future recordings. However, we ended up not carrying out
this exact experiment on account of its suspected unsuitabil-
ity for passive engagement.

Instead, the neural network approach was revisited by
Ottenheym.*® The study — as a bachelor thesis — investi-
gated the applicability of GCNs for automating the inter-
pretation of in-the-wild skeletal data. GCNs have produced
promising results in the recognition of gestures and actions
regarding skeleton data and are attracting increasing atten-
tion.* The study examines whether GCNs, in specific the
Spatial-Temporal Graph Convolutional Network (ST-GCN),
can effectively interpret gestures captured in uncontrolled
environments. A dataset was created with data from one
of our deployments, and a training environment was devel-
oped that incorporates transfer learning and data augmen-
tation methods. The results show that GCNs can capture
the spatial and temporal dynamics necessary for accurate
gesture recognition in real-world scenarios and provide
insight into the potential of GCNs to optimize automated
gesture interpretation in heterogenous and uncontrolled
in-the-wild environments.

The findings demonstrate that the ST-GCN model is
effective in detecting specific gestures using in-the-wild
skeleton data, thereby establishing its value as a tool for
automating gesture recognition. Transfer learning has been
demonstrated to be particularly advantageous, markedly
enhancing model performance. Furthermore, the selection
of optimizer, batch size, and weight decay is instrumental in
attaining optimal accuracy. While pre-processing and data
augmentation do exert an influence, it is less pronounced
than initially anticipated. Ultimately, the complexity of the
classification task, whether two-class or three-class, has a
discernible impact on performance, with simpler tasks con-
sistently yielding superior outcomes.

5 Discussion

Despite our general expansion of research opportunities
through sophisticated sensor technology and large amounts
of data, some of the traditional challenges remain when
conducting research in the wild. This highlights the need
for ongoing research into methodological approaches
to deployment-based studies of digital collaboration
tools and to empirical in-the-wild studies in general’
In this discussion, we would like to take a step back
and attempt to summarize our broader current view
of the research field. At the same time, we would like
to sketch further provisional ideas on how we, as HCI
scientists, perceive ML and data-driven applications
to be reshaping the landscape of conducting research
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in our field. Ultimately, our discussion comes down
to the central question of how these approaches can
effectively support longitudinal, in-the-wild research
involving body tracking sensors. In our view, there
is no easy answer to this question. First, we point
out the continuing importance of qualitative research
approaches for in-the-wild HCI research. At the same
time, the framework conditions for mixed methods in the
post-COVID working world have become more complex
due to the accelerated hybridization of work, as we explain
in the second section. In the third section, we point out the
fundamental qualitative and labour-intensive challenge of
integrating ML approaches, a balancing act that must be
very precisely tailored to the respective research purpose.
In the last section, we discuss issues of research ethics
related to process transparency for participants and the
creation of the best possible anonymity in the analysis of
sensor-based movement data.

5.1 The undisputed importance of
qualitative data

Qualitative methods have always been and will always be
crucial to any longitudinal endeavor seeking meaningful
insights. We are convinced that only a holistic approach
incorporating both quantitative and qualitative methods
can provide rich and disruptive results. However, this adds
complexity to processes such as data collection and prepa-
ration when compared to working solely with quantitative
data from body tracking sensors, where these processes are
described as straightforward.”> We think that the data inten-
sity of ML methods will not replace qualitative field work
such as conducting on-site observations and interviews to
a large extent. However, we do believe that ML can provide
new, insightful nuances to an overarching research method-
ology (e.g., grounded theory) that aims to establish robust
theoretical foundations for the field. For instance, ML meth-
ods can produce new abstractions of body tracking data
that were previously impossible or would have required
countless hours of manual labor. We believe that more
research is necessary, focusing on the interplay of qualita-
tive and quantitative methods, as well as how applied Al can
assist effectively throughout this process to, as Stephanidis
et al.* point out, achieve robust assessments of relevant
interactions. At its core, data itself can be conceptualized as
a representation of a sociotechnical system, incorporating
technology, social norms, and biases.** Undeniably, both
qualitative and quantitative data add a rich layer of nuance
to this picture. Depending on the research questions and
on future developments, the focus may shift more toward
one end of the methodological spectrum. However, we are
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confident that qualitative methods will be integral to HCI
field research in years to come.

5.2 Contextual implications: post-pandemic
hybrid work arrangements

Simultaneously, new challenges have emerged regarding
hybrid work practices post COVID-19. While some compa-
nies have returned to their pre-pandemic way of doing
business (i.e., working in the office from 9 to 5), others are
keeping the option of working from home available to their
employees. In fact, working from home remains important
for most employees, who have transitioned to a hybrid
working model.*! As a result of this development, one of our
research partners, for example, established the aforesaid
New Work café to encourage communication between on-
site employees and to make the office space more appealing
in general. Hybrid work presents some unique challenges to
in-the-wild research, although ethnographic approaches are
certainly taking up this challenge and methodologically re-
exploring the field of hybrid organizations, including inno-
vative documentation methods and media formats.*?~46

For example, certain in-office practices have been
replaced by digital alternatives (e.g., online meeting for-
mats), making them difficult to investigate and understand
in the first place, as well as their wider impact. Further-
more, at certain times during the week, there may only be
a few employees in the office. This could make it impossi-
ble to collect meaningful data using body tracking sensors.
When deploying HCI artefacts, researchers must therefore
anticipate audience fluctuation or change. Although issues
relating to hybrid work only indirectly touch upon the topic
of data-driven applications, it is nonetheless crucial to con-
sider them, as they may determine whether an HCI research
project is successful or not.

5.3 Algorithmic choices, a researcher’s
headache

Itis also important to remember that none of the supervised
or unsupervised algorithms presented here are a univer-
sal solution, nor are they all-encompassing for their cor-
responding research questions in any sense. For instance,
there are still performance-related issues (e.g., clustering
compute complexity), we do use the algorithms for spe-
cific purposes (e.g., grouping similar walking paths), and a
notable amount of manual work is still necessary (e.g., pre-
processing steps). There is clearly more work to be done, but
these approaches are helpful for our research. We believe
that we have now reached a point where we can use ML
algorithms in a more meaningful way with rich, long-term
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body tracking data. Our extensive experience of conducting
research in the field over several years plays a significant
role in this observation (e.g., understanding the research
contexts, having on-site contacts, resolving hardware issues,
and more). We have become increasingly accustomed to
using different algorithmic methods such as clustering algo-
rithms and neural networks such as GCNs. The central ques-
tion is how to capture complex social behavior by consid-
ering a multitude of data sources, such as body tracking
sensors, and which ML algorithms are appropriate for this
purpose.

Notably, systems capable of ingesting full video feeds
have recently been emerging in the field of large langu-
age models (LLMs) such as VideoLLM-online.*’” These app-
roaches promise semi-automated interpretation of video
data. However, in their current form, they would be unsuit-
able for our context as we need to guarantee privacy
by prohibiting the use of full video for empirical anal-
ysis. The abstraction and removal of personally identifi-
able information from the raw data was one of the rea-
sons that led us to body tracking sensors to begin with
(see the following section). Nonetheless, video LLMs are
an interesting emerging application of Al technology and
their applicability to different contexts may improve in the
future.

5.4 Ethical considerations

Apart from the technical concerns relating to body tracking
data, ethical and regulatory challenges also deserve atten-
tion. Ethical concerns generally arise from the collection,
usage, and storage of data.*®%9 As Stephanidis et al.* vividly
summarize, Al allows for the use of personalized data in
many unforeseen ways. The ostensible anonymity of body
tracking data, with its absence of physically identifying fea-
tures as one would see in video recordings, can fall apart
when you consider ways to identify individuals from their
specific movements (e.g., gait analysis,’® characteristic ges-
tures) or interactions with external data, such as correlating
people’s presence in body tracking recordings with vacation
dates or lab sign-in sheets. Even though we had initially
planned to publish the raw body tracking data recorded at
our deployment setups, a deeper investigation of the poten-
tial for deanonymization caused us to reverse that decision
and publish only summarized statistical data. This is also
why we practice transparency when collecting data with
body tracking sensors during field deployments, such as
through handouts and discussions. We believe that ethical
concerns will become increasingly relevant as Al is adopted
in HCI research.
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Another ethical issue arises when we consider body
tracking sensors and their vendor-specific limitations. We
must not underestimate the normative role of body tracking
models in the data collection phase. Simply by virtue of
categorizing image areas into “humans” and “not humans”,
the way the body tracking process works entails making spe-
cific assumptions about what constitutes a “valid” human
body, which, depending on the inference approach, may be
implicit or even completely unknown. For example, we can
conjecture that deviations from the average human body
(e.g., usage of mobility aids such as canes or wheelchairs,
limbs that have atypical proportions or that are missing
altogether, generally atypical body shapes) may lead to a
higher rate of detection errors and thereby introduce data
integrity errors rooted in accessibility and inclusivity. In
the most egregious outcome, people who do not sufficiently
“fit” the training data may be quietly and unintentionally
omitted from recordings. Improvements on this issue would
be predicated on, for example, more open and inclusive
training data sets for image recognition, something that
would require significant resources and likely additional
regulation of industry efforts. We have discussed these chal-
lenges in more depth in Fietkau and Schwarzer.>!

6 Conclusions

In this article, we have reported on our connected in-the-
wild deployment studies with body tracking sensors. We
have summarized the different data-driven methodological
approaches that our experiments have pursued, covering
manual feature-based analysis as well as the use of ML
classifiers. Following our report, we have discussed several
challenges encountered in the course of these experiments,
which have not been conclusively solved, but for which our
approaches may offer guidance for future experiments of a
similar nature.

At time of writing, the research community is exper-
imenting with AI methods in a huge variety of contexts.
Our experiences suggest opportunities for AI/ML methods
to assist in evaluating quantitative sensor data in a way that
can reduce the burden on researchers, but only with newly
developed tooling for specific questions. For example, our
evaluation of 2D walking trajectories required the develop-
ment of bespoke software tooling on top of the general tools
for recording and visualizing body tracking data that we had
already built. The same has been the case for each of our
individual research questions regarding human behavior.

In the future, a fundamental analysis of work scenarios
in the wild must increasingly include support for hybrid
work, which has become a regular working mode in many
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companies. Our future research will develop and evaluate
a methodological framework to improve understanding of
collaboration in authentic hybrid work environments. This
framework, briefly outlined in Schwarzer et al.,>* will focus
on automation (i.e., interpretations based on algorithms and
ML models) and data triangulation (i.e., a range of research
methods) to understand the wider implications of the eval-
uated technologies. We also intend to utilize digital and
on-site ethnographic approaches, combining methods to
observe location-based, remote, and hybrid work activities,
and to learn how these modes of interaction influence each
other, and what types of interaction may emerge. Building
on the insights from our concluded research project,’® we
intend to continue to approach the empirical work through
the technological context of ambient displays. These arti-
facts follow the leitmotif of “physical windows” into digital
spaces, such as bhidirectional camera setups for real-time
collaboration between teams, or “metaphorical windows”
that display contextual information to promote insights into
remote work. At the same time, our research will focus on
a specific hybrid work practice: coordination between agile
software development teams or cross-team coordination.
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