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Abstract: Body tracking sensors (i.e., depth cameras) such

as Microsoft Kinect have been utilized in ambient display

research for more than a decade. They facilitate a deeper

understanding of phenomena occurring throughout inter-

actions, aid the investigation of ambient displays within a

broader context, and effectively complement existing quali-

tative methods such as on-site observations. Although these

sensors have made significant contributions to research,

there are still challenges with regard to data collection and

analysis, particularly in light of recent advances in artifi-

cial intelligence. Further research is needed into how these

sensors can contribute to a better understanding of how

ambient displays are used in practice long term and how

they can help to develop this understanding. In this arti-

cle, we expand on the potentials and limitations of body

tracking sensors that we experienced in our own in-the-

wild research. To this end, we present insights from a small

fleet of long-term, real-world installations of ambient dis-

playswemanage, which incorporatemultiple body tracking

sensors. The present article is concluded with a discussion

of future directions for the field. In particular, the present

study explores the potential contributions of body tracking

sensors to recent methodological developments in the field

of Human-Computer Interaction.
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1 Introduction

In recent years, there have been unprecedented changes

in the field of Human-Computer Interaction (HCI), espe-

cially relating to data-driven applications in the wake of

the ongoing hype surrounding applied artificial intelligence

(AI) and its countless methodological developments, par-

ticularly in the field of machine learning (ML). Additional

advancements include Extended Reality (XR) technology,

namely Virtual Reality (VR) and Augmented Reality (AR),

Internet of Things (IoT), blockchain, big data, pervasive or

ubiquitous technology, and more.l – 3 These technological

advancements are fundamentally changing the way people

interact with each other, raising the question of how we

can understand their wider societal implications.4 Although

traditional interaction issues remain relevant and warrant

further research, many contemporary issues in HCI, such as

ethics, privacy, and security, are in fact related to this shift

to data intensity.4 As Weiser5 envisioned in the early 1990s,

the modern world is now characterized by rapidly advanc-

ing ubiquitous technology,6 with which humans interact

in their natural, built, and synthetic environments. Public

and semi-public displays, or ambient displays as we refer

to them, are part of this development. A wide variety of

applications exist today, including examples, for instance,

to visualize the production and consumption of electricity

stemming from photovoltaic panels in private households,7

to highlight work progress in agile software development

teams,8 to ease access to public transport systems,9 and to

combine large-display installations with AR technology to

address perspective distortion.10

One important area of HCI that can help us to under-

stand how technological artefacts are used and adopted

is behavior tracking. On a technological level, the term

behavior tracking more broadly refers to the ability to pro-

vide researchers with in-depth insights into, for example,

how people move around or collaborate. While the over-

all number of approaches to behavior tracking observed

in HCI is increasing,4 the same is true for the domain of

ambient display research. The first studies investigating
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user behavior surrounding display installations were con-

ducted during the 2010s. They focused on issues such as

scrutinizing pedestrian traffic in public spaces [e.g., 11, 12]

and on students’ walking behavior around university can-

teen installations [e.g., 13], to name but a few. Themain tech-

nical tools for this purpose were, and are to this day, body

tracking sensors (i.e., depth cameras) from various vendors

(e.g., Microsoft Kinect and Stereolabs ZED). These sensors

utilize different approaches, such as time-of-flight, stereo

vision, or structured light, to this end. Due to their cost

efficiency in comparison to manual (human) observation,

their ability to be readily adapted to other deployments, and

the fact that they are easily integrated with other method-

ologies,11,12 body tracking sensors have become integral to

this category of research in recent years. Notably, body

tracking sensors have been used in the natural and situated

environments of ambient display installations. Research

in real-world places, or in the wild as we refer to follow-

ing Williamson and Williamson,13 embodies an important

paradigm shift in HCI and experiences increasing attention

in the community.14 However, research in thewild is amessy

and complex endeavor.13,15,16

Some of the issues we touch on in this article are

reflected in the seven grand challenges for the HCI com-

munity.4 These include, for instance that current sensor

systems, big data analyses, and ML methods in general still

need to fully adjust to human needs with respect tosupport-

ing and enhancing human abilities.4,17 Further limitations

include a scale shortage in current research endeavors, a

lack of long-term insights from real-world environments,

and an insufficient theoretical background.18–20 Equally,

appropriate evaluation and validation techniques remain

an open issue.4,19 Applied to ambient display research, we

still have limited knowledge of how to approach themethod-

ological aspects of longitudinal in-the-wild research, partic-

ularly in light of recent advances in body tracking sensor

technology and AI in general. Admittedly, data-driven appli-

cations andMLhavemade significant progress in thefield of

HCI in recent years. However, we need to establish a founda-

tion with regard to the application of body tracking sensors

in longitudinal research spanning multiple years. We argue

that further fundamental work is necessary to enable the

ready application of ML methods in our domain. Important

overarching questions surround aspects such as automation

and the combination of quantitative and qualitative meth-

ods into a solid theoretical framework, what type of data to

collect, as well as which supervised and unsupervised ML

approaches are fruitful candidates. From our perspective

as HCI scientists, we would like to raise awareness of the

challenges we have experienced in our research and the

opportunities we see for our community going forward. To

this end,we concentrate on three central research questions

in the present article:

1. How canwemake effective use ofmodern body tracking

sensors with their specific feature sets in mind?

2. In what ways do specific usage patterns manifest them-

selves in the collected data?

3. What are useful algorithmic means to analyze the data?

By doing this, we aim to highlight the complexities of in-

the-wild research at different phases using body tracking

sensors. While some issues concern aspects prior to or

throughout data collection (e.g., hardware limitations), oth-

ers draw attention to the foundations of the analysis pro-

cess (e.g., automatically distill usage patterns). We do not

claim that the three outlined questions elaborated on are

exhaustive in any way, nor that they reflect the challenges

other researchersmight face. However, they summarize key

issues that we came across in our own research.

The article is organized as follows: In Section 2, related

literature is introduced. The different body tracking sen-

sors employed in our research are presented in Section 3,

while Section 4 elaborates on the various experiments and

field research that we have conducted. In Section 5, we

discuss the experimental and methodological outcomes in

more detail and present guidance for future research, and

Section 6 concludes this article.

2 Related work

This section highlights recent developments in the use of

body tracking sensors in ambient display research, conclud-

ing with a reflection on the status quo.

2.1 State of the art

The field of computer-supported cooperative work (CSCW)

has a long history rooted in the analysis and design of tech-

nology for collaboration, which would be much too expan-

sive to summarize here. For a literature overview of how

collaboration using ambient displays can be experimentally

evaluated in general (not focusing on body tracking sen-

sors), see Mateescu et al.21 The work to integrate the current

wave of AI technologies into ambient display evaluation

studies is still ongoing, but we have begun to see examples

such as Atta et al.22

For this article, we will focus our attention on the study

of ambient display deployments using body tracking tech-

nology. In the following, selected examples for usage of body

tracking sensors in real-world environments are presented.
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Some of these examples represent short-term efforts, while

others have used body tracking sensors in their work for

up to a year. The most seminal work in this context is the

study by Williamson and Williamson.11 The authors ana-

lyzed pedestrian traffic in front of a public display installa-

tion by using a camera positioned three stories above the

walkway on which the display was located. The principal

motivationwas to understandhow such technology changes

public spaces, how it is being used in authentic contexts,

and howdifferent interaction styles actuallywork. A custom

computer vision based tool incorporating a variety of differ-

ent diagnostic and visualization techniqueswas used to ana-

lyze the data. While data of over 900 pedestrians were col-

lected, the studywas very short-termed, as the data collected

amounted to only about 4 h of video material. However, the

work ofWilliamson andWilliamson11 paved the way for the

use of camera sensors to track people’smovement in front of

display installations, thereby inspiring subsequent research

in the following years. A few years later, Williamson and

Williamson13 revisited their approach, now concentrating

on the question of how experimenter interventions affect

the evaluation process. Specifically, the authors sought to

find out, how different types of experimenter presence (e.g.,

no visible presence of investigators in contrast to proac-

tively intervening during interaction) introduce what kind

of bias. The authors collected a total of 4 h of video data

for each of the three types of intervention investigated,

including more than 5,000 passers-by in total. A Microsoft

Kinect v2 camera was installed to capture data right in

front of the display, while another camera was placed 15 m

above and 15 m behind the display installation to collect

overhead video material. OpenNI libraries were used to

analyze the data from the Kinect sensor and the authors uti-

lized their own custom tool mentioned above to investigate

pedestrian traffic. In addition, the authors collected data

frommanual observations and interaction logs. Williamson

and Williamson13 found, for instance, that the presence of

an observer significantly reduced interactions with the dis-

play installation. Fundamentally, they encourage the sys-

tematic control of experimenter roles in evaluations and

the use of high-quality measurements such as pedestrian

traffic data to quantify the observer effect. In the same year,

Elhart et al.23 introduced and evaluated a similar custom

tool for tracking audience mobility. Their research motiva-

tion was similar to that of Williamson and Williamson,11

while emphasizing that only a few low-cost tools exist

to capture spatial and temporal behavior. In their setup,

the authors used a Microsoft Kinect device and utilized a

combination of open source computer vision and web visu-

alization techniques (among others OpenNI and OpenCV).

The camera and display were installed in front of a uni-

versity canteen. The tool itself was evaluated using 14

videos, each 5 min long. Subsequently, the tool was used

over 52 days to collect and analyze data from approximately

41,000 passers-by. Their findings include the fact that, for

instance, the highest number of passers-by occurred during

lunchtime and that most people spent no more than 4 s

in front of the display. Elhart et al.23 believe that the main

strength of their sensor-based approach lies in providing

additional information on aspects such as content transi-

tions and touch interactions. Another example is the study

byMäkelä et al.,12 which, to the best of our knowledge, is the

first long-term investigation of a real-world display setup

using body tracking sensors. The authors’ motivation con-

cerned the overall process of data collection and analysis

of depth-based camera data, resulting in a semi-automatic

process to study public displays. Their research is based on

data collected over the course of a year using a Microsoft

Kinect camera in a university setting. This data includes

information on over 100,000 passers-by. The introduced

process consists of four principal phases: data collection,

preparation, feature extraction, and analysis.While the first

two phases are straightforward and can be automated to a

large extent, the latter two phases require the most manual

work, such as determining research questions. The authors

ran analyses usingMicrosoft Excel and SPSS. In their setting,

Mäkelä et al.12 found that, for example, over 90 % of users

were passive users (i.e., peoplewhowere not actively engag-

ing with the installation). They also revealed that users

entering the sensors’s field of view from the front were

significantly more likely to become direct users (i.e., people

who interacted with the display). Overall, their study made

notable contributions on a methodological level.

2.2 Research gaps and implications

We revisited the aforementioned studies and conducted a

comprehensive literature review. The aim was to find new

research on audience behavior in the wild that uses body

tracking sensors in ambient display studies. While we ini-

tially set outwith a forward reference search and an evalua-

tion of resulting papers, we subsequently also focusedmore

broadly on relevant literature repositories such as ACM

Digital Library and IEEE Xplore. This process revealed that,

to date, the studies by Elhart et al.23 and Mäkelä et al.12 are

the only ones to have attempted longer-term research into

this topic. While all of the studies mentioned here greatly

informed our research, we find this fact surprising for two

meaningful reasons.

First, given the progress made in recent years, more

accurate and feature-rich cameras are available today. As
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these newer cameras can produce richer insights (e.g.,

detection of a higher number of people simultaneously, a

wider field of view, and generally better detection accuracy),

they could also assist greatly in improving our understand-

ing of a display’s surrounding environment. Alongside qual-

itative methods such as interviews and observations, these

sensors could help us to investigate group constellations,

collaborative exchanges, and effects occurring during inter-

action (e.g., the honeypot effect) in more detail. By doing

so, modern body tracking sensors could help to shed light

on the wider implications of ambient displays in real-world

settings. We could better reflect on when displays installa-

tions are being used and how, as well as how they fit into

the existing toolset architecture of every modern company.

To us, it seems that research in this area has stalled – i.e.,

transitioning fromacademic feasibility studies to real-world

endeavors that utilize the full range of qualitative and quan-

titative methods. We believe that foundational research is

necessary to pioneermethodological approaches in order to

develop new, disruptive theories that can advance our field

at its core. Such endeavors certainly require a great deal of

time and resources, but we believe they are worthwhile. In

other words, we think that our field requires more holistic

and long-term research not only expanding onmethodolog-

ical questions, but also touching on the real-world implica-

tions of display deployments.

Second, despite the recent advancements in AI, it seems

that our field is not capitalizing on them. In addition to

the more traditional approaches, such as clustering and

tree algorithms, many variants of neural networks are now

widely available. Some of these are specifically designed

to work with body tracking data, such as Graph Convolu-

tional Network (GCN) models, and enable new approaches

to analyzing large amounts of data. Instead, it seems that a

large part of the HCI community’s focus has shifted towards

workingwith technologies such as AR andVR. Yet, we still do

not know how ambient displays are utilized in practice, nor

how we can even develop this understanding. We encour-

age researchers to experiment with AI’s capabilities to gain

a better understanding of its potential contributions. For

example, supervised learning approaches could be explored

to identify ways to automate certain aspects of qualitative

work such as coding procedures. Others may explore ways

to leverage GCNs to identify patterns of interaction in body

tracking data. Overall, we believe that there is significant

potential that remains unused, given the advances in AI and

the need to handle large volumes of data produced by body

tracking sensors.

3 Body tracking sensors

Building on the research gaps and implications mentioned

above, we now turn our attention to the deployment of

body tracking sensors in our research. First, we highlight

how these sensors have been used and for what purpose.

Second, we then provide a brief overview in terms of how

these sensors work and operate. Finally, we present one

custom-built tool that we use in our research for visualizing

and analyzing the corresponding body tracking data.

3.1 Deployment settings

All of our past and current deployments have focused pri-

marily on investigating long-term usage. The methodolog-

ical toolset available at the different points in time has

affected these individual investigations. For example, when

we began our first multi-year deployment in 2014, we ini-

tially relied on interviews, observations and touch inter-

action logs. Building on this, we developed a fundamental

theory about how the display installation had been used by

agile software development teams back then.24 Our moti-

vation was driven by a discrepancy between the ideas pro-

posed in the literature so far – such as the notion that ambi-

ent displays encourage communication and collaboration

– and how these promises actuallymanifest in practice over

time, if at all.

In 2016, we conducted our first experiments using a

Microsoft Kinect v2 sensor and began intensifying our work

with body tracking sensors. We quickly realized the oppor-

tunities that this new technology presented, both in amend-

ing existing methods and in contributing rich new nuances

to the overall research. It suddenly became easy to expand

on interactions in an installation’s vicinity, thereby reduc-

ing the need for field observations. While these sensors

undoubtedly have their limitations, such as a limited field

of view, they nonetheless enable us to gain an initial under-

standing of a display’s surroundings. The results of our ini-

tial experiments were published in an article in 2022.8 Over

the coming years, we have set up different display deploy-

ments in both Hamburg andMunich. Our researchmatured

in terms of, for example, specific research questions and

the experience of conducting research in the wild. Overall,

we have run deployment experiments mainly in two differ-

ent semi-public contexts: a software development company

and a university, both in Germany. For both contexts, we

placed one ormore interactive ambient displays into a room

which is not open to the public at large, but which many
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Figure 1: Two photos of representative ambient display deployments with body tracking sensors. Left: software company deployment, using a

Microsoft Kinect v2 sensor. Right: university deployment, using a Stereolabs ZED 2 sensor.

people with access (company employees/university stu-

dents) would pass by on foot every day. In fact, the amount

of expected foot traffic was the main criterion for our place-

ment decisions. For example, Figure 1 on the left shows one

of our two currently deployed installations in the aforemen-

tioned company’s NewWork café, which is visited by many

people during the day.

Each deployment consisted of a screen (rarely also

more than one) with a body tracking sensor attached to the

top of its frame. In this way, experminents revealed that the

sensors could perform the body tracking task of the area

right in front of them the best. Again, our goal is to capture

and understand the usage of ambient displays “in passing”

(as opposed to prolonged, focused use), and all facets of the

deployment – not only the display placement, but also the

interactive software running on the device – were oriented

towards this goal. The detailed purpose and contents of the

ambient displays are beyond the scope of this article, but

further information can be found in Schwarzer et al.8 and

Koch et al.,25 respectively.

3.2 Technical approach

Our attention now turns to the question of how these sen-

sors operate. Optical body tracking sensors are the main

instrument used for detailed analysis of behavior, focusing

on anonymized body tracking models. The optical sensors

used in our research (Microsoft Kinect, Stereolabs ZED 2)

work roughly as follows: First, an image of the environment

is digitized by the camera sensors. However, the imagemate-

rial is not recorded immediately, but instead a body tracking

algorithm is applied in real time, which marks individuals

with their body postures in the image. While the Kinect v2

sensor uses a random forest algorithm for this purpose, the

ZED 2 relies on a neural network.

The manufacturers of the two commercial sensors we

use do not disclose the exact details of their respective

recognitionmethods. However,we candeduce the basic pro-

cess from studies [e.g., 26]. Using Kinect v2 as an example,

we would like to describe the functionality in more detail

below. It can be assumed that the random forest algorithm

integrated in Kinect v2 was trained with several hundred

thousand images to ensure its functionality. The process-

ing chain of the camera can be divided into three parts,

visualized in Figure 2. First, the Kinect sensor collects depth

images using infrared, in which each pixel contains depth

information accurate to within a few centimeters. The

advantages of depth images include the ability to cope

with poor lighting conditions, being invariant to color, tex-

ture, and body shape, and the ability to synthesize realistic

images of people. Second, classification algorithms are used

to determine probabilistic pixel-based body regions. Some

of these parts are defined in such a way that they directly

locate specific body points, while others fill in the gaps or

can be used in combination to predict other joints. Finally,

the specific positions of body points are specified in three-

dimensional coordinates. The previously determined pixel-

based information regarding the body regions must now be

integrated across all pixels in order to make reliable sug-

gestions for the positions of the body points. For the Kinect

v2, this procedure results in a total of 26 individual body

points per person. The body points determined analytically

in this way are recorded with their positions in space. As

a result, the sensor technology provides relatively accurate

data on the position, posture, line of sight, etc. of the persons

in the spatial area in front of the screens. Although it is

not possible to recognize specific people on the basis of

these abstract body models, conclusions can be drawn with

regard to recurring individual or group behavior.
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Figure 2: The body tracking algorithm used by the Microsoft Kinect v2 sensor, showing how a depth image gets processed into body regions and

finally key points. Own visualization, inspired by Shotton et al.26

The Stereolabs ZED 2 conceptually fulfills the same

task, but there are nuanced differences in the technical

approaches. It uses parallax depth detection based on two

separate camera sensors instead of the Kinect v2’s infrared

technology. At a slightly higher off-the-shelf purchase price,

it can support increased resolutions and frame rates as

well as detect a maximum of 10 humans up to 20 m away

compared to the Kinect v2’s maximum of six humans up to

5 m away. The Kinect v2 has a fixed 25-point body model,

while the ZED 2 supports several different bodymodels with

up to 38 key points. However, unlike the Kinect’s, the ZED 2

software does not perform engagement estimations, which

must be implemented by the data consumer if they are

needed.

3.3 PoseViz

One major obstacle was the lack of an established format

for storing and transmitting body tracking data. Existing

data formats were either vendor-specific (e.g., Microsoft

Kinect Studio recordings) or not suitable for stationary body

tracking setups where passers-by may enter and leave the

area of interest at any time (e.g., Biovision Hierarchy for-

mat). To be able to do non-trivial empirical work with body

tracking data, we first had to design a format suitable for

storing such data as well as transfering it in bulk or in real

time, and then develop software tools to read, write, and

visualize data in this format. With the goal in mind that

future researchers should have as easy a time as possible

to understand our recorded body tracking data if needed,

we decided on a textual format that uses line-based fields

to delineate frames (specific moments in time) within a

recording, persons within a frame, and key points (specific

limbs and joints) within each person. Thismakes our format

(dubbed PoseViz) fairly easy to parse algorithmically as well

as to read in any text editor. In the process of designing

the format, we implemented code to access our two sensor

models’ respective APIs and transform their body track-

ing data into our format to enable them to be stored and

reviewed.

This gave us the ability to work on a browser-based

playback software (see Figure 3) that also shares the name

PoseViz with the file format itself. PoseViz is capable of

reading one or more stored body tracking recordings, ren-

der them in a 3D visualization, and allow playback and

Figure 3: A screenshot of the PoseViz software showing a person moving

inside an abstract 3D space with video-style playback controls at the

bottom. Visit https://poseviz.com/ to see this demonstration in motion.

https://poseviz.com/
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scrubbing just like in typical video players. It is possible to

look at interactions from different angles and to generally

get an impression of the quality of the sensor data. PoseViz

allows the user to toggle various display aspects including

position markers, gaze estimations, and walking trajecto-

ries. The playback speed and rendering perspective can be

adjusted, and PoseViz can display time-based annotations as

well as engagement data over time, if such data is embed-

ded in the recording. The planning and design process is

described inmore detail in Fietkau.27 An interactive demon-

stration of PoseViz is available for free testing online.1

Examining larger quantities of body tracking record-

ings for specific hypotheses requires additional bespoke

tooling that can analyze the aspects relevant to those

hypotheses. Our work examining two-dimensional walking

paths as clustered time series data,28 described further in

subsubsection 4.3.2, serves as a practical example of the

kind of quantitative insight that can be gained from body

tracking data facilitated by tools like PoseViz.

4 Experiments and field research

We now draw attention to insights from experiments and

field research we have carried out in the aforementioned

settings. As outlined in the introduction, we focus on three

central questions to this end.

4.1 How can we make effective use of
modern body tracking sensors with their
specific feature sets in mind?

To this day, we are using two types of body tracking sensors

in our research: Microsoft Kinect v2 (released in 2014) and

Stereolabs ZED 2 (released in 2019) sensors. Each camera

has its own advantages and disadvantages. For instance,

the ZED 2 sensor can detect up to 10 people simultaneously,

whereas the Kinect v2 camera is limited to six people in

total. However, the Kinect v2 sensor provides a specific

feature which the ZED 2 sensor does not: To a greater

or lesser extent, it can tell us whether or not a person

is looking directly in its direction. Tests revealed that the

Kinect v2 cameras successfully determined the looking-at

gesture when mounted on top of each display (see Figure 1)

even when we were looking at the displays instead. This

aspect was fundamental to our research, as it enabled us

to detect when people interacted with the displays in a

passive way (e.g., by passing by without engaging with them

1 See: https://poseviz.com/.

actively), as opposed to passing by inattentively. Overall,

we refer to this behavior as engagement in our research.

Before we started using body tracking sensors, our research

relied heavily on touch interaction logs. This meant that,

except from observations and interviews, we could not

expand on passive interactions in the displays’ surrounding

areas. In the following, we shed light on how we replicated

this detection mechanism of engagement with the ZED 2

sensor.

4.1.1 Parameters for engagement

We started by determining a list of body tracking features

that, in combination, could allow us to establish a correla-

tion with engagement.29 We settled on the following list:

– Distance between a person and a display.

– Movement speed of a person (slowly walking or stand-

ing people are more likely to be paying attention).

– Body orientation (people facing towards the display are

more likely to be paying attention to it).

– Gaze direction (same as before but measuring only the

head instead of the full body).

– Direct interaction (people reaching or pointing towards

the display are very likely to be paying attention to it).

Each of these five variables was measured, then clamped

and normalized to a scalar value in the range between 0 and

1. For the distance and speed values, the input range was

calibrated using practically sensible real-world values. For

the body orientation and gaze direction values, the angular

difference to the direction of the screen was calculated,

with any angle >90◦ being assigned the value 0. The direct

interaction value measured the time that people had their

arms raised and pointed at the screen, with the value of 1

reached after 15 s. The engagement score for each person

at each point in time was then calculated as the average

of these five values. Accordingly, an engagement score of

0.8 indicates, for instance, that a person showed a higher

level of engagement, while a score of 0.2 underlines the

opposite.

4.1.2 Initial testing

We performed a pilot test to validate this method to calcu-

late the engagement score.29 To that end, 27 different con-

stellations of individuals paying attention to the screen from

different distances, at differentmovement speeds, andusing

different body and gaze angles were performed in front

of our experimental installation. The resulting recordings

were manually scored for their degree of attention and the

https://poseviz.com/
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results comparedwith our engagement score. Based on this,

we determined that there were still major issues with the

measurement extraction code (e.g., inaccuracies in themea-

surement of directions), but that the correlation was good

enough to prove the general feasibility of the approach.

Next, we took a sample from the non-staged body track-

ing data gathered from our long-term deployments for the

sake of comparison. As expected, the real-world data was

generally noisier and containedmore distractions and irrel-

evant movements compared to our staged scenarios. To

test the feasibility of large-scale asynchronous engagement

scoring of body tracking data, we scored some 40,000 indi-

vidual recordings. It was difficult to assess the validity of

the scoring since there was not much accessible ground

truth to compare it to, but the score distributions across

the twodeployment sites appearedplausible regarding their

spatial circumstances (two screens in hallways predomi-

nantly used by passers-by, one with much more unaffiliated

foot traffic than the other) and a brief qualitative analysis

of randomly selected recordings revealed that the feature-

based engagement score appeared to be generally suitable

as an automated estimation for manually assigned engage-

ment values. In a categorized comparison of the two mea-

surements, we observed an average deviation of 15–20 %

[29, Table 2]. The main conclusion of this experiment was

that the engagement score could be a valuable instrument

in determining attention from body tracking data without

manual intervention.

4.1.3 Revised testing

To further refine the approach, we conducted a follow-up

experiment, reported on by Filippov et al.,30 in which the

engagement score calculation was simplified to omit the

gaze direction,which proved difficult to estimate accurately,

and the presence of direct interaction, which unduly down-

ranked passive but interested observers. The engagement

scorewas thus calculated based on the body orientation, the

distance to the screen, and the movement speed. Further-

more, this second experimental approach made a stronger

effort to examine the body tracking recordings as time series

data that has dynamics which can be analyzed instead of

merely averaged out. By calculating the engagement score

for each timestamp in a recording and plotting it against

time, we can examine how a person’s engagement changes

throughout the recording. Detecting the local maximum

allows us to identify individuals who paid attention for only

a short period within a longer recording.

Similar to the initial test, we once again took a sam-

ple of real unsupervised body tracking data and manually

labeled it on our engagement scale. Using this data as a

baseline, we were additionally able to derive a suitable

engagement score threshold to differentiate between non-

engaging passers-by and people who paid at least some

attention to the installation. Testing the classifier with a

different random sample from the data set, we arrived at

an accuracy of just over 90 %, a notable improvement com-

pared to the first iteration that further validates the feature-

based engagement scoring approach.

4.2 In what ways do specific usage patterns
manifest themselves in the collected
data?

Alongside questions concerning interaction patterns, times

of peak usage and information displayed at certain times,

there is also the question of what specific usage patterns

might occur and how they manifest in the collected data.

The literature describes different patterns that can typically

be observed in ambient display research such as the novelty

effect31 and thehoneypot effect.32 Thenovelty effect suggests

that new technology is used more frequently in the period

immediately following its deployment. The honeypot effect,

at its most basic, refers to situations in which one person

standing in front of a display installation attracts others to

join them. In our work, we placed a strong emphasis on the

honeypot effect because of the interesting collaboration con-

stellations that it involves by definition. Arguably, the range

of emerging collaboration patterns is vast. In the following,

however, we expand on the work we carried out to investi-

gate how the honeypot effect potentially manifests itself in

the data. The overarching goal is to be able to automatically

classify instances of the honeypot effect in the future.

4.2.1 Detecting the honeypot effect

To gain insight,we performed a study building on the earlier

work on engagement measurement29,30 described in sub-

section 4.1, now looking beyond interactions by individual

people and specifically examining constellations ofmultiple

people appearing in the deployment areas simultaneously,

in order to detect and classify instances of the honeypot

effect.

Our investigation of empirical methods for the detec-

tion of instances of the honeypot effect is described

by Bieschke,33 in which the feature-based approach was

extended to multi-person patterns and used to auto-

matically filter for honeypot effect candidates in long-

term body tracking recordings. Once again, a collec-

tion of archetypical honeypot effect situations was artifi-

cially enacted and recorded in front of a real interactive
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installation as body tracking data. Amanual examination of

their commonalities followed by the iterative development

of a feature-based classifier led to the conclusion that hon-

eypot constellations always featuremultiple people arriving

at different times with overlapping presence windows (pre-

condition), with everyone involved looking in the direction

of the screen and approaching it for some amount of time.

Using these criteria, a sample of 9,000 recordings covering

one calendar month was classified into honeypot and non-

honeypot scenarios, with five honeypot candidates emerg-

ing. These were subsequently verified through individual

visual inspection and compared to a random sample of non-

matches, substantiating the claim that the feature-based

classifier can practically function as a honeypot constella-

tion detector.

4.2.2 Limitations of this approach

It is worth noting that this approach as well as possible ML

classifiers for honeypot constellations must contend with

the fact that body tracking recordings give us access to

people’s movements, but not their intentions. According to

the strict definition of thehoneypot effect, the secondperson

must give attention to the installation because someone else

is already present. By analyzing body tracking data, we

can only ascertain that someone else was already present,

but we do not gain insight into people’s actual motivations,

which would require deeper qualitative analysis through

methods such as interviews or on-site observations.

4.3 What are useful algorithmic means to
analyze the data?

The focus now shifts to the analysis of the data itself.

Over the last decade, our general analytical approaches

have evolved and matured. We experimented with vari-

ous methods, which we outline below. This development

is also reflected to some extent within our community, as

can be seen when we compare two fundamental studies

that reflect on the current state of HCI.4,34 While AI played

a rather minor role in their 2019 study, Stephanidis et al.4

make extensive references to it in the revised version from

2025.

4.3.1 Descriptive statistics

In 2017, we deployed a first Microsoft Kinect v2 setup and

collected roughly 100,000 records over 4.5 months. The first

challengewas to devise away of analyzing this large amount

of data. We asked ourselves fundamental questions about

how to approach this dataset, what to look for, the qual-

ity of the data, and others. Ultimately, inspired by related

research [e.g., 13], we opted for descriptive analyses and

published our results in an article.8 These analyses con-

centrated on spatial and temporal audience behavior using

different visualizations and statistics to demonstrate our

findings. For example, we identified the directions from

which people approached the display installation. We also

indicated the areas within the camera’s field of view that

showed the highest level of engagement.

Arguably, the most important lesson learned during

this time was how to effectively collect, pre-process (e.g.,

filtering), and analyze depth-based camera data in a mean-

ingful way. We spent a great deal of time visually inspecting

the data and digging into its nuances. We also learned to

accept some limitations of the Kinect sensor. For example,

the camera sometimes accidentally lost tracking of people

when they briefly left the rather narrow field of view. Addi-

tionally, the possibility that the camera will lose tracking of

a person due to occlusion must be accounted for. Therefore,

while these sensors could be vital components of a research

design, their limitations must be taken into account.

In summary, this phase of our research was shaped by

the fact of having some preexisting knowledge (e.g., poten-

tial ways to analyze the data) and assumptions (e.g., prelim-

inary insights on usage patterns) of the data. This stemmed

primarily from our extensive immersion in the data prior

to conducting any analysis, as well as from our reading of

related literature.

4.3.2 Unsupervised learning approaches: clustering

algorithms

We gradually realized that we needed to shift away from

making assumptions about expected results. To a greater

or lesser extent, the goal was to replace at least some of

the labor-intensive steps discussed above and to increase

the level of automation during analysis. We focused on

finding ways for algorithms to explain what we see in the

data instead of us providing descriptive explanations. One

of the central pieces of the analysis involved investigat-

ing groups of walking trajectories, which in our case are

paths in a two-dimensional coordinate landscape that depict

the movement of people from a bird’s-eye view. At the

most basic level, these trajectories show how people behave

in front of a display installation, such as passing by or

moving toward it. Walking trajectories therefore contribute

important insights regarding passive usage. Although we

found instances of similar walking trajectories in the data

manually, we could not determine whether these were
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representative at all or whether they were all potential

instances in the data set.

As a result, we reviewed the literature to find ways to

assist with this endeavor. Ultimately, we found that hier-

archical clustering combined with dynamic time warping

was an effective way to automatically group walking tra-

jectories. Other studies, as we point out in our correspond-

ing publication,28 have used both algorithms to examine,

for instance, flyways of birds35 or household electric load

curves.36 We implemented the algorithms and ran evalu-

ations on a subset of the data. Overall, we were able to

categorize different types of walking trajectories into cor-

responding groups.

Although we experienced this unsupervised ML

algorithm helpful, it has its limitations. One of the most

obvious limitations is the computational performance

of the algorithm: with datasets increasing in duration,

calculating the results can quickly become practically

untenable. Future work must address these performance

issues for the implementation to be applicable to large

data sets. Furthermore, because the nuances of the data

gathered in the wild are so rich, there is often no clear

distinction between two groups of walking trajectories,

even when suggested by the algorithm. Additional work is

necessary to fine-tune the clustering itself, as well as the

similarity metric used in dynamic time warping.

4.3.3 Supervised learning efforts

While we are still working on refining the above-detailed

clustering algorithm, we were also eager to find out if we

could automatically identify patterns in the data that we

already manually identified and were interested in. Hence,

we were looking into supervised ML approaches. In our

exploration of potentially suitable methodologies to detect

and classify engagement and other underlying effects and

sentiments in body tracking data, we did not want to limit

ourselves to human-discernible features. Our initial foray

into using supervised ML is documented by Lacher et al.37

We posited that a ML model based on manually labeled

training data may be able to perform the classification of

individual body tracking frames into engaged and non-

engaged states. In this cursory study design, tagged training

data was generated by automatically labeling frames within

a short time range as engaged surrounding any direct inter-

action event in the system logs. The downside is that passive

engagement would not be accounted for by this approach,

but on the upside, it would yield large amounts of highly

reliable training data for active engagement. A model could

then be trained using this data and used as a classifier for

future recordings. However, we ended up not carrying out

this exact experiment on account of its suspected unsuitabil-

ity for passive engagement.

Instead, the neural network approach was revisited by

Ottenheym.38 The study – as a bachelor thesis – investi-

gated the applicability of GCNs for automating the inter-

pretation of in-the-wild skeletal data. GCNs have produced

promising results in the recognition of gestures and actions

regarding skeleton data and are attracting increasing atten-

tion.39 The study examines whether GCNs, in specific the

Spatial-Temporal Graph Convolutional Network (ST-GCN),

can effectively interpret gestures captured in uncontrolled

environments. A dataset was created with data from one

of our deployments, and a training environment was devel-

oped that incorporates transfer learning and data augmen-

tation methods. The results show that GCNs can capture

the spatial and temporal dynamics necessary for accurate

gesture recognition in real-world scenarios and provide

insight into the potential of GCNs to optimize automated

gesture interpretation in heterogenous and uncontrolled

in-the-wild environments.

The findings demonstrate that the ST-GCN model is

effective in detecting specific gestures using in-the-wild

skeleton data, thereby establishing its value as a tool for

automating gesture recognition. Transfer learning has been

demonstrated to be particularly advantageous, markedly

enhancing model performance. Furthermore, the selection

of optimizer, batch size, and weight decay is instrumental in

attaining optimal accuracy. While pre-processing and data

augmentation do exert an influence, it is less pronounced

than initially anticipated. Ultimately, the complexity of the

classification task, whether two-class or three-class, has a

discernible impact on performance, with simpler tasks con-

sistently yielding superior outcomes.

5 Discussion

Despite our general expansion of research opportunities

through sophisticated sensor technology and large amounts

of data, some of the traditional challenges remain when

conducting research in the wild. This highlights the need

for ongoing research into methodological approaches

to deployment-based studies of digital collaboration

tools and to empirical in-the-wild studies in general.4

In this discussion, we would like to take a step back

and attempt to summarize our broader current view

of the research field. At the same time, we would like

to sketch further provisional ideas on how we, as HCI

scientists, perceive ML and data-driven applications

to be reshaping the landscape of conducting research



J. Schwarzer et al.: Exploring body tracking sensors in longitudinal ambient display studies — 11

in our field. Ultimately, our discussion comes down

to the central question of how these approaches can

effectively support longitudinal, in-the-wild research

involving body tracking sensors. In our view, there

is no easy answer to this question. First, we point

out the continuing importance of qualitative research

approaches for in-the-wild HCI research. At the same

time, the framework conditions for mixed methods in the

post-COVID working world have become more complex

due to the accelerated hybridization of work, as we explain

in the second section. In the third section, we point out the

fundamental qualitative and labour-intensive challenge of

integrating ML approaches, a balancing act that must be

very precisely tailored to the respective research purpose.

In the last section, we discuss issues of research ethics

related to process transparency for participants and the

creation of the best possible anonymity in the analysis of

sensor-based movement data.

5.1 The undisputed importance of
qualitative data

Qualitative methods have always been and will always be

crucial to any longitudinal endeavor seeking meaningful

insights. We are convinced that only a holistic approach

incorporating both quantitative and qualitative methods

can provide rich and disruptive results. However, this adds

complexity to processes such as data collection and prepa-

ration when compared to working solely with quantitative

data from body tracking sensors, where these processes are

described as straightforward.12 We think that the data inten-

sity of ML methods will not replace qualitative field work

such as conducting on-site observations and interviews to

a large extent. However, we do believe that ML can provide

new, insightful nuances to an overarching researchmethod-

ology (e.g., grounded theory) that aims to establish robust

theoretical foundations for the field. For instance, MLmeth-

ods can produce new abstractions of body tracking data

that were previously impossible or would have required

countless hours of manual labor. We believe that more

research is necessary, focusing on the interplay of qualita-

tive and quantitativemethods, aswell as how applied AI can

assist effectively throughout this process to, as Stephanidis

et al.4 point out, achieve robust assessments of relevant

interactions. At its core, data itself can be conceptualized as

a representation of a sociotechnical system, incorporating

technology, social norms, and biases.40 Undeniably, both

qualitative and quantitative data add a rich layer of nuance

to this picture. Depending on the research questions and

on future developments, the focus may shift more toward

one end of the methodological spectrum. However, we are

confident that qualitative methods will be integral to HCI

field research in years to come.

5.2 Contextual implications: post-pandemic
hybrid work arrangements

Simultaneously, new challenges have emerged regarding

hybrid work practices post COVID-19. While some compa-

nies have returned to their pre-pandemic way of doing

business (i.e., working in the office from 9 to 5), others are

keeping the option of working from home available to their

employees. In fact, working from home remains important

for most employees, who have transitioned to a hybrid

workingmodel.41 As a result of this development, one of our

research partners, for example, established the aforesaid

New Work café to encourage communication between on-

site employees and to make the office space more appealing

in general. Hybridwork presents some unique challenges to

in-the-wild research, although ethnographic approaches are

certainly taking up this challenge and methodologically re-

exploring the field of hybrid organizations, including inno-

vative documentation methods and media formats.42–46

For example, certain in-office practices have been

replaced by digital alternatives (e.g., online meeting for-

mats), making them difficult to investigate and understand

in the first place, as well as their wider impact. Further-

more, at certain times during the week, there may only be

a few employees in the office. This could make it impossi-

ble to collect meaningful data using body tracking sensors.

When deploying HCI artefacts, researchers must therefore

anticipate audience fluctuation or change. Although issues

relating to hybrid work only indirectly touch upon the topic

of data-driven applications, it is nonetheless crucial to con-

sider them, as theymay determinewhether anHCI research

project is successful or not.

5.3 Algorithmic choices, a researcher’s
headache

It is also important to remember that none of the supervised

or unsupervised algorithms presented here are a univer-

sal solution, nor are they all-encompassing for their cor-

responding research questions in any sense. For instance,

there are still performance-related issues (e.g., clustering

compute complexity), we do use the algorithms for spe-

cific purposes (e.g., grouping similar walking paths), and a

notable amount of manual work is still necessary (e.g., pre-

processing steps). There is clearlymorework to be done, but

these approaches are helpful for our research. We believe

that we have now reached a point where we can use ML

algorithms in a more meaningful way with rich, long-term
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body tracking data. Our extensive experience of conducting

research in the field over several years plays a significant

role in this observation (e.g., understanding the research

contexts, having on-site contacts, resolving hardware issues,

and more). We have become increasingly accustomed to

using different algorithmicmethods such as clustering algo-

rithms and neural networks such as GCNs. The central ques-

tion is how to capture complex social behavior by consid-

ering a multitude of data sources, such as body tracking

sensors, and which ML algorithms are appropriate for this

purpose.

Notably, systems capable of ingesting full video feeds

have recently been emerging in the field of large langu-

age models (LLMs) such as VideoLLM-online.47 These app-

roaches promise semi-automated interpretation of video

data. However, in their current form, they would be unsuit-

able for our context as we need to guarantee privacy

by prohibiting the use of full video for empirical anal-

ysis. The abstraction and removal of personally identifi-

able information from the raw data was one of the rea-

sons that led us to body tracking sensors to begin with

(see the following section). Nonetheless, video LLMs are

an interesting emerging application of AI technology and

their applicability to different contexts may improve in the

future.

5.4 Ethical considerations

Apart from the technical concerns relating to body tracking

data, ethical and regulatory challenges also deserve atten-

tion. Ethical concerns generally arise from the collection,

usage, and storage of data.48,49 As Stephanidis et al.4 vividly

summarize, AI allows for the use of personalized data in

many unforeseen ways. The ostensible anonymity of body

tracking data, with its absence of physically identifying fea-

tures as one would see in video recordings, can fall apart

when you consider ways to identify individuals from their

specific movements (e.g., gait analysis,50 characteristic ges-

tures) or interactionswith external data, such as correlating

people’s presence in body tracking recordingswith vacation

dates or lab sign-in sheets. Even though we had initially

planned to publish the raw body tracking data recorded at

our deployment setups, a deeper investigation of the poten-

tial for deanonymization caused us to reverse that decision

and publish only summarized statistical data. This is also

why we practice transparency when collecting data with

body tracking sensors during field deployments, such as

through handouts and discussions. We believe that ethical

concerns will become increasingly relevant as AI is adopted

in HCI research.

Another ethical issue arises when we consider body

tracking sensors and their vendor-specific limitations. We

must not underestimate the normative role of body tracking

models in the data collection phase. Simply by virtue of

categorizing image areas into “humans” and “not humans”,

theway the body tracking processworks entailsmaking spe-

cific assumptions about what constitutes a “valid” human

body, which, depending on the inference approach, may be

implicit or even completely unknown. For example, we can

conjecture that deviations from the average human body

(e.g., usage of mobility aids such as canes or wheelchairs,

limbs that have atypical proportions or that are missing

altogether, generally atypical body shapes) may lead to a

higher rate of detection errors and thereby introduce data

integrity errors rooted in accessibility and inclusivity. In

the most egregious outcome, people who do not sufficiently

“fit” the training data may be quietly and unintentionally

omitted from recordings. Improvements on this issuewould

be predicated on, for example, more open and inclusive

training data sets for image recognition, something that

would require significant resources and likely additional

regulation of industry efforts. We have discussed these chal-

lenges in more depth in Fietkau and Schwarzer.51

6 Conclusions

In this article, we have reported on our connected in-the-

wild deployment studies with body tracking sensors. We

have summarized the different data-driven methodological

approaches that our experiments have pursued, covering

manual feature-based analysis as well as the use of ML

classifiers. Following our report, we have discussed several

challenges encountered in the course of these experiments,

which have not been conclusively solved, but for which our

approaches may offer guidance for future experiments of a

similar nature.

At time of writing, the research community is exper-

imenting with AI methods in a huge variety of contexts.

Our experiences suggest opportunities for AI/ML methods

to assist in evaluating quantitative sensor data in a way that

can reduce the burden on researchers, but only with newly

developed tooling for specific questions. For example, our

evaluation of 2D walking trajectories required the develop-

ment of bespoke software tooling on top of the general tools

for recording andvisualizing body tracking data thatwehad

already built. The same has been the case for each of our

individual research questions regarding human behavior.

In the future, a fundamental analysis of work scenarios

in the wild must increasingly include support for hybrid

work, which has become a regular working mode in many
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companies. Our future research will develop and evaluate

a methodological framework to improve understanding of

collaboration in authentic hybrid work environments. This

framework, briefly outlined in Schwarzer et al.,52 will focus

on automation (i.e., interpretations based on algorithms and

ML models) and data triangulation (i.e., a range of research

methods) to understand the wider implications of the eval-

uated technologies. We also intend to utilize digital and

on-site ethnographic approaches, combining methods to

observe location-based, remote, and hybrid work activities,

and to learn how these modes of interaction influence each

other, and what types of interaction may emerge. Building

on the insights from our concluded research project,53 we

intend to continue to approach the empirical work through

the technological context of ambient displays. These arti-

facts follow the leitmotif of “physical windows” into digital

spaces, such as bidirectional camera setups for real-time

collaboration between teams, or “metaphorical windows”

that display contextual information to promote insights into

remote work. At the same time, our research will focus on

a specific hybrid work practice: coordination between agile

software development teams or cross-team coordination.
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